Differences in eco-physiological responses to the removal of adventitious roots between Syzygium nervosum A. Cunn. ex DC. and Syzygium cumini (L.) Skeels saplings under waterlogging

Author:

Li Dadong,Miao Lingfeng,Tian Mengjie,Zhou Jingjing,Yang Weizong,Yang FanORCID

Abstract

Abstract Key message The production of adventitious roots partially counteracts the negative effects of waterlogging on the growth of Syzygium nervosum A. Cunn. ex DC. and Syzygium cumini (L.) Skeels. S. cumini was more responsive and suffered from larger negative effects than S. nervosum after the removal of adventitious roots. Context Adventitious roots contain gas channels and functionally replace or compensate for the loss of primary roots that usually decay during waterlogging. However, the importance of adventitious roots on growth in waterlogged woody plants varies with species. Therefore, there has been some controversy about whether adventitious roots have beneficial effects on the growth of waterlogged plants. Aims We assessed whether S. nervosum and S. cumini differentially responded to the ablation of adventitious roots during waterlogging and whether compensatory responses occurred in the primary roots in both species. Methods S. nervosum and S. cumini saplings were subjected to waterlogging and adventitious root removal for 120 days, and morphological, physiological, biochemical parameters, and biomass were recorded. Results All plants survived waterlogging, and produced adventitious roots at the shoot base. Waterlogging had negative effects on the growth of both species, but the effect was more severe in S. cumini than in S. nervosum as seen from the values of comprehensive evaluation and total biomass. However, S. nervosum compensated for the ablation of adventitious roots with increased primary root dry mass, primary root activity, total root length, root tip number, and peroxidase activity. Conclusions S. nervosum with a high proportion of adventitious roots would be at an advantage during waterlogging. The removal of adventitious roots was detrimental to the growth of both species, but S. nervosum exhibited less damage than S. cumini due to its compensatory physiological responses and its primary roots.

Funder

National Natural Science Foundation of China

Hainan Provincial Natural Science Foundation of China

Hainan Province Science and Technology Special Fund

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3