Potential soil methane oxidation in naturally regenerated oak-dominated temperate deciduous forest stands responds to soil water status regardless of their age—an intact core incubation study

Author:

Bras Nicolas,Plain CarolineORCID,Epron DanielORCID

Abstract

Abstract Key message Potential CH4 oxidation in the top soil layer increased with decreasing soil water content in spring but was inhibited during severe summer drought in naturally-regenerated oak-dominated temperate deciduous forest stands regardless of their age. No direct effect of mineral nitrogen on soil CH4 oxidation was found. Soil CH4 oxidation in temperate forests could be reduced by extreme climatic events. Context The oxidation of atmospheric methane (CH4) by methanotrophic bacteria in forest soils is an important but overlooked ecosystem service. Aim Our objective was to determine which factors drive variations in soil CH4 oxidation in oak-dominated temperate deciduous forest stands of different ages. Methods Soil samples were collected in 16 stands aged 20 to 143 years in periods of high and low soil water content (SWC). The potential rate of soil CH4 oxidation was measured by incubating the first five centimetres of intact soil cores at 20 °C. Results SWC was the main driver accounting for variations in CH4 oxidation. In spring, a two-fold reduction in SWC greatly increased CH4 oxidation. But when the soil was dry in late summer, a further reduction in SWC led to a decrease in CH4 oxidation in the top soil layer. No direct effect of mineral nitrogen on soil CH4 oxidation was found. Conclusions With regard to soil CH4 oxidation, naturally regenerated forest stands contribute equally to climate change mitigation regardless of their age. Considering future climate scenarios for Europe, soil CH4 sink in temperate forests could be reduced, due to both an increase in the number of flooding episodes in spring and drier summers.

Funder

Agence Nationale de la Recherche

Agence nationale de recherche

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3