Driving mechanisms of productivity stability vary with selective harvesting intensities in a mixed broad-leaved Korean pine forest

Author:

Geng YanORCID,Xiang Kehan,Zhang Chunyu,Zhao Xiuhai

Abstract

Abstract Key message We found that the stabilizing mechanisms for forest productivity varied across harvesting intensities in a mixed broad-leaved Korean pine forest. Effects of overyielding at high species richness and species asynchrony occurred only in unharvested and lightly harvested plots, whereas asymmetries between individuals of different size contributed significantly to stabilizing productivity when harvestings became intensive. Context Understanding the driving factors of forest ecosystem stability has become increasingly crucial in forest management. However, it remains unclear whether and how the stabilizing mechanisms of forest productivity might be influenced by management practices. Aims We related the temporal stability of aboveground biomass productivity to harvesting history. We further tested how three key driving mechanisms of stability might be modulated by selective harvesting intensities. Methods Based on a 10-year monitoring (five repeated tree inventories) of a mixed broad-leaved Korean pine forest in Northeastern China recovering from selective harvesting, we examined the relative importance of two diversity-dependent mechanisms (overyielding and species asynchrony) and one size-dependent mechanism (asymmetric growth) for productivity stability across a wide range of intensities (0–73.4% basal area removed). Results We found that selective harvesting significantly lowered the productivity stability, species asynchrony, and growth dominance coefficient. Growth dominance coefficient had an overall stronger effect on stability than species richness and asynchrony. Moreover, the strengths of stabilizing mechanisms varied across harvesting intensities: effects of overyielding at high species richness and species asynchrony were detected only in unharvested and lightly harvested plots, whereas the explanatory power of growth dominance coefficient outweighed the diversity-related variables when harvesting became intensive. Conclusions We emphasized the importance to consider both diversity- and size-related explanatory variables as potential mechanisms for the temporal stability of forest productivity. In fact, how growth is partitioned among trees of different species as well as sizes may co-determine the response of forest stability to disturbances.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3