Tree stumps — an important but undervalued dead wood pool

Author:

Didion MarkusORCID,Abegg MeinradORCID

Abstract

Abstract Key message Dead wood in forests is an important resource due to its role for nutrient cycles, carbon budgets, and biodiversity, among other. While standing and downed dead wood are typically monitored in National Forest Inventories (NFI), stumps have not received comparable attention. Based on the detailed stump inventory in the current Swiss NFI, this study demonstrates the important contribution of stumps to the dead wood pool. Context Dead wood (DW) in forests is an important resource due to its role for nutrient cycles, carbon budgets, and biodiversity, among other. NFIs provide representative DW estimates focusing primarily on standing and downed DW. Little is known on stumps as a DW pool. Aims The aim of this study is to obtain an accurate assessment of the stump volume and biomass in the Swiss NFI to identify its significance for the DW pool, to evaluate the development over the last 30 years, and to examine the need for additional measurements for improving estimates compared to commonly applied assumptions for stump height such as a constant stump height or a fraction of tree height. Methods The current NFI includes a detailed stump inventory to improve accuracy and completeness of the aboveground DW pool estimate. Based on available data, stump volume estimates were derived at different accuracies to evaluate the contribution to the total DW pool over time. Results Based on the extended stump inventory in the NFI5, the contribution of stumps to the total DW pool is approximately 25%. The effect of simplifying assumptions or limited measurements to estimate stump volume can result in a significant underestimation of up to $$2/3$$ 2 / 3 of the more accurate and comprehensive assessment of this pool. Conclusion This study demonstrates that stumps can be a significant proportion of DW in forests, which should be accounted for in order to improve accuracy and completeness of NFI estimates and derived data such as C stocks for greenhouse gas reporting.

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3