Spatial optimization of genetic thinning in seed orchards

Author:

Chaloupková KateřinaORCID,Lstibůrek MilanORCID

Abstract

Abstract Key message We provide a mathematical model to determine which trees should be ruled out from the grid to promote random mating in seed orchards under genetic thinning. Context Genetic thinning (roguing) is a common practice in forest tree breeding to remove inferior genotypes in seed orchards, thus boosting the genetic worth of the seed crop. Aims To develop a general methodology for spatial optimization of genetic thinning. It should promote random mating and consider any existing seed orchard layout. Methods The model is based on the Optimum-Neighborhood Allocation algorithm (Chaloupková et al., Forests 10:1-6, 2019). The algorithm’s efficiency was evaluated using computer simulation. A fully randomized scheme was used as a reference. In addition, the study provides a demonstration on an actual seed orchard. Results Simulations confirm the method’s efficiency in promoting random mating compared to the fully randomized allocation across a wide range of selection intensities. We suggest Linear Deployment as a preferred method for calculating optimum deployment contributions at higher thinning intensities. The algorithm was programmed in R and is publicly available. Conclusion Breeders can use the software and follow the example to implement genetic thinning in different practical scenarios assuming any seed orchard layout. The approach enhances random mating while maximizing genetic response to selection.

Funder

Technologická Agentura České Republiky

OP RDE Czech Republic

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3