Potential of using surface temperature data to benchmark Sentinel-2-based forest phenometrics in boreal Finland

Author:

Majasalmi TittaORCID,Rautiainen MiinaORCID

Abstract

Abstract Key message We present a new approach to calibrate timings of phenological events from satellite data (e.g., Sentinel-2 MSI data) with readily available surface temperature data. The new approach improves the estimation of growing season length in boreal forests. Context Satellite data is used to calibrate phenology models employed in land surface model components of climate models. However, realistic quantification of forest phenological transitions, such as the greenup and senescence, across large spatial scales remains challenging due to the lack of sufficient ground validation data representative of both forest tree canopy and forest understory species compositions. Aims The aim of this study was to develop a new approach to benchmark boreal forest land surface phenology obtained from Sentinel-2 (S2) against surface temperature data. Methods We computed S2 phenological transition dates and compared them to ground reference data on temperature from a network of meteorological stations across Finland (60–70N°). Results Our results showed that applying standard phenometrics directly to S2 data to estimate the growing season length in boreal forests may lead to clear biases in all species groups. Conclusion Our approach to use temperature data to calibrate boreal forest phenometrics allows flexible application across spatial scales (i.e., point or grid) and different satellite sensors. It can be combined with any vegetation land cover product to provide a link between surface temperature data and forest seasonal reflectance properties.

Funder

Aalto-Yliopisto

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3