Forest management and former land use have no effect on soil fungal diversity in uneven-aged mountain high forests

Author:

Mollier SylvainORCID,Kunsler GeorgesORCID,Dupouey Jean-LucORCID,Mulero StephenORCID,Bergès LaurentORCID

Abstract

Abstract Key message Metabarcoding analysis of soil fungal communities in French mountain forests revealed that harvesting intensity, time since last harvest and former land use had no effect on fungal community composition compared to key abiotic factors. Low-intensity management in these uneven-aged mountain forests therefore has limited effects on soil fungal community composition which is mainly driven by elevation and edaphic properties. Context Past and current human activities are known to affect forest biodiversity. However, the effects of former land use and forest management have been studied much more extensively on higher plants than on fungi. Aims Our objectives were to assess the effects of harvesting intensity, duration since last harvest and former land use on soil fungal communities in uneven-aged mountain high forests. Methods On the basis of historical land-use maps drawn between 1862 and 1864 and on historical forest management archives, we selected 62 sites in the French Alps with contrasting land-use histories (ancient forests, which were already forested on historical maps vs recent forests, which have recovered following abandonment of pastures) and different durations since last harvest (from 1 to over 50 years). We carried out soil sampling and assessed fungal diversity by metabarcoding analysis. We analysed soil fungal molecular operational taxonomic units (MOTU) diversity as a whole and for the main lifestyle groups (such as wood saprotrophic or ectomycorrhizal fungi) using multiple linear regressions on Shannon’s diversity index and fungal taxonomic composition using canonical correlation analysis. Results We found no significant effect of harvesting intensity, time since last harvest or land-use history on total fungal MOTU diversity, fungal lifestyle diversity or taxonomic composition. In contrast, we observed significant effects of elevation, pH, organic carbon and available phosphorus content on the taxonomic and functional composition of soil fungal communities. Conclusions The structure of soil fungal communities (i.e. diversity and species composition) was mainly determined by elevation and edaphic factors, indicating a high-context dependency, as previously found in similar studies. Our study in mountain forests shows that recent forests established on former pastures had no legacy effect on soil conditions and fungal communities, in contrast to previous results in lowland areas, where recent forests were mainly established on former cropland. Uneven-aged forest management had no effect on fungal diversity, in contrast to previous results observed in even-aged high forests.

Funder

OFB

INRAE

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3