Validity and cardio-metabolic risk profiles of DNA methylation clocks among adults in south-central Côte d’Ivoire

Author:

Sanchez Dafne,Jeong Ayoung,Essé Clemence,Bassa Fidèle K.,Koné Siaka,Acka Félix,Laubhouet-Koffi Véronique,Kouassi Dinard,Utzinger Jürg,N’Goran Eliézer K.,Bonfoh Bassirou,Imboden Medea,Holloway John W.,Eze Ikenna C.ORCID

Abstract

Abstract Background Aging populations in Africa face a growing burden of non-communicable diseases (NCDs), contextualized in broad external exposome and weak health systems. These could accelerate aging and shorten lifespan. DNA methylation (DNAm) epigenetic clocks allow investigation of biological aging, and perform well in high-income countries. However, their validity has rarely been tested in low- and middle-income countries. We investigated the performance of epigenetic clocks (as aging biomarkers), and their cardio-metabolic risk profiles among adults in south-central Côte d’Ivoire. Results We derived four measures of epigenetic clocks (i.e., HorvathAge, HannumAge, PhenoAge and GrimAge) and their corresponding epigenetic age acceleration (EAA; Intrinsic, Extrinsic, PhenoAA and GrimAA) using genome-wide DNAm data from 393 participants of the Côte d’Ivoire dual burden of disease study, aged 18–79 years. Epigenetic age exhibited strong correlations (0.83 ≤ Pearson’s r ≤ 0.93) but weaker concordance (0.73 ≤ Lin’s rC ≤ 0.85) with chronological age. Epigenetic clocks optimally predicted chronological age at 32 (HannumAge), 62 (HorvathAge) and 78 (GrimAge) years. Multivariable linear EAA models identified male sex (IEAA, EEAA and GrimAA), lower household wealth (EEAA and PhenoAA), high-risk alcohol intake (PhenoAA and GrimAA), smoking (GrimAA), physical activity (IEAA and GrimAA) and body mass index [BMI] (GrimAA) as independent determinants. Physical activity and BMI exhibited quadratic associations with GrimAA. Illustratively, GrimAge was accelerated in underweight and obese participants. Risk associations of GrimAA were largely driven by age-adjusted DNAm surrogate plasminogen activator inhibitor-1 (DNAmPAI-1) and pack years. Multivariable logistic models of cardio-metabolic phenotypes identified EEAA, PhenoAA and DNAmPAI-1 as determinants of high blood pressure, fasting glucose, triglycerides and metabolic syndrome severity. Conclusions We provide evidence validating the applicability of epigenetic clocks as aging biomarkers and potential link between sociodemographic and lifestyle-related factors, and cardio-metabolic health in the underrepresented African population. Future longitudinal studies incorporating broad environmental aspects and age-related clinical outcomes should allow to pinpoint the clinical and public health utility of DNAm clocks as mediators in NCD trajectory, in low- and middle-income countries.

Funder

Novartis Foundation for Sustainable Development

Universität Basel

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metabolic syndrome and epigenetic aging: a twin study;International Journal of Obesity;2024-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3