Author:
Firincioglulari Ali,Erturk Hakan,Firincioglulari Mujgan,Biber Cigdem
Abstract
Abstract
Background
This study aimed to evaluate atherosclerosis as comorbidity by measuring the carotid (bulb and common carotid artery) Carotid intima-media thickness in COPD-diagnosed patients and to evaluate the relationship of atherosclerosis with the prevalence of COPD, hypoxemia and hypercapnia.
Methods
This study was conducted out between January 2019-December 2019 consisting of a total of 140 participants (70 COPD-diagnosed patients-70 healthy individuals). The COPD-diagnosed patients have been planned according to the selection and diagnosis criteria as per the GOLD 2019 guide. It is planned to evaluate as per prospective matching case-control study of the carotid thickness, radial gas analysis, spirometric and demographic characteristics of COPD diagnosed patients and healthy individuals.
Results
The average Carotid intima-media thickness in COPD patients was 0.8746±0.161 (p<0.05), and the thickness of the carotid bulb was 1.04±0.150 (p<0.05). In the control group, the average CCA intima-media thickness was 0.6650±0.139 (p<0.05), and the thickness of the carotid bulb was 0.8250±0.15(p<0.05) For the carotid thickness that has increased in COPD diagnosed patients a significant relationship is determined between hypoxemia (p<0.05) and hypercapnia(p<0.05). A significant relationship determined between CIMT and severity of COPD (p<0.05) The CIMT was high in COPD patients with hypoxemia and hypercapnia(p<0.05).
Conclusion
Significant difference was determined between the severity (grades) of COPD (mild, moderate, severe, very severe) in carotid thickness. Also, CIMT was found to be high in patients who is in the early phases of the prevalence of COPD. In COPD-diagnosed patients, it was determined that severity of COPD, hypoxemia, hypercapnia and age were determining factors of atherosclerosis.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Reference64 articles.
1. Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chroni c Obstructive Lung Disease (GOLD) 2020 update. Available from: http: //goldcopd.org.
2. Bourdin A, Burgel PR, Chanez P, Garcia G, Perez T, Roche N. Recent advances in COPD: pathophysiology, respiratory physiology and clinical aspects, including comorbidities. Eur Respir Rev. 2009;18:198–212.
3. Maclay JD, MacNee W. Cardiovascular disease in COPD: mechanisms. Chest. 2013;143:798–807.
4. Lahousse L, van den Bouwhuijsen QJ, Loth DW, Joos GF, Hofman A, Witteman JC, et al. Chronic obstructive pulmonary disease and lipid core carotid artery plaques in the elderly: the Rotterdam Study. Am J Respir Crit Care Med. 2013;187:58–64.
5. Karakas OM, Cullu N, Karakas EK, Sak ZH, Yildizhan MU, Daglioglu E, et al. Evaluation of carotid intima-media thickness in the patients with chronic obstructive pulmonary disease. Acta Med Mediterr. 2013;29:265.