Abstract
Abstract
Background
Overexpressed in various solid tumors, gastrin-releasing peptide receptor (GRPR) is a promising cancer imaging marker and therapeutic target. Although antagonists are preferable for the development of GRPR-targeted radiopharmaceuticals due to potentially fewer side effects, internalization of agonists may lead to longer tumor retention and better treatment efficacy. In this study, we systematically investigated unnatural amino acid substitutions to improve in vivo stability and tumor uptake of a previously reported GRPR-targeted agonist tracer, [68Ga]Ga-TacBOMB2 (68Ga-DOTA-Pip-D-Phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Leu13-Thz14-NH2).
Results
Unnatural amino acid substitutions were conducted for Gln7, Trp8, Ala9, Val10, Gly11 and His12, either alone or in combination. Out of 25 unnatural amino acid substitutions, tert-Leu10 (Tle10) and NMe-His12 substitutions were identified to be preferable modifications especially in combination. Compared with the previously reported [68Ga]Ga-TacBOMB2, the Tle10 and NMe-His12 derived [68Ga]Ga-LW01110 showed retained agonist characteristics and improved GRPR binding affinity (Ki = 7.62 vs 1.39 nM), in vivo stability (12.7 vs 89.0% intact tracer in mouse plasma at 15 min post-injection) and tumor uptake (5.95 vs 16.6 %ID/g at 1 h post-injection).
Conclusions
Unnatural amino acid substitution is an effective strategy to improve in vivo stability and tumor uptake of peptide-based radiopharmaceuticals. With excellent tumor uptake and tumor-to-background contrast, [68Ga]Ga-LW01110 is promising for detecting GRPR-expressing cancer lesions with PET. Since agonists can lead to internalization upon binding to receptors and foreseeable long tumor retention, our optimized GRPR-targeted sequence, [Tle10,NMe-His12,Thz14]Bombesin(7–14), is a promising template for use for the design of GRPR-targeted radiotherapeutic agents.
Funder
Canadian Institutes of Health Research
Publisher
Springer Science and Business Media LLC
Reference45 articles.
1. Baratto L, Song H, Duan H, Hatami N, Bagshaw H, Buyyounouski M, et al. PSMA- and GRPR-targeted PET: results from 50 patients with biochemically recurrent prostate cancer. J Nucl Med. 2021;62:1545–9.
2. Baum R, Prasad V, Mutloka N, Frischknecht M, Maecke H, Reubi J. Molecular imaging of bombesin receptors in various tumors by Ga-68 AMBA PET/CT: first results. J Nucl Med. 2007;48:79.
3. Bitar KN, Zhu X-X. Expression of bombesin-receptor subtypes and their differential regulation of colonic smooth muscle contraction. Gastroenterology. 1993;105:1672–80.
4. Bratanovic IJ, Zhang C, Zhang Z, Kuo HT, Colpo N, Zeisler J, et al. A Radiotracer for molecular imaging and therapy of gastrin-releasing peptide receptor-positive prostate cancer. J Nucl Med. 2022;63:424–30.
5. Chatalic KL, Konijnenberg M, Nonnekens J, de Blois E, Hoeben S, de Ridder C, et al. In vivo stabilization of a gastrin-releasing peptide receptor antagonist enhances PET imaging and radionuclide therapy of prostate cancer in preclinical studies. Theranostics. 2016;6:104.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献