Preclinical evaluation of new GRPR-antagonists with improved metabolic stability for radiotheranostic use in oncology

Author:

Kanellopoulos Panagiotis,Mattsson Adam,Abouzayed Ayman,Obeid Karim,Nock Berthold A.,Tolmachev Vladimir,Maina Theodosia,Orlova AnnaORCID

Abstract

Abstract Background The gastrin-releasing peptide receptor (GRPR) has been extensively studied as a biomolecular target for peptide-based radiotheranostics. However, the lack of metabolic stability and the rapid clearance of peptide radioligands, including radiolabeled GRPR-antagonists, often impede clinical application. Aiming at circumventing these drawbacks, we have designed three new GRPR-antagonist radioligands using [99mTc]Tc-DB15 ([99mTc]Tc-N4-AMA-DIG-DPhe-Gln-Trp-Ala-Val-Sar-His-Leu-NHEt; AMA: p-aminomethylaniline; DIG: diglycolate) as a motif, due to its high GRPR-affinity and stability to neprilysin (NEP). The new analogues carry the DOTAGA-chelator (1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid) through different linkers at the N-terminus to allow for labeling with the theranostic radionuclide pair In-111/Lu-177. After labeling with In-111 the following radioligands were evaluated: (i) [111In]In-AU-SAR-M1 ([111In]In-DOTAGA-AMA-DIG-DPhe-Gln-Trp-Ala-Val-Sar-His-Leu-NHEt), (ii) [111In]In-AU-SAR-M2 ([111In]In-[DOTAGA-Arg]AU-SAR-M1) and (iii) [111In]In-AU-SAR-M3 ([111In]In-[DOTAGA-DArg]AU-SAR-M1). Results These radioligands were compared in a series of in vitro assays using prostate adenocarcinoma PC-3 cells and in murine models. They all displayed high and GRPR-specific uptake in PC-3 cells. Analysis of mice blood collected 5 min post-injection (pi) revealed similar or even higher metabolic stability of the new radioligands compared with [99mTc]Tc-DB15. The stability could be further increased when the mice were treated with Entresto® to in situ induce NEP-inhibition. In PC-3 xenograft-bearing mice, [111In]In-AU-SAR-M1 displayed the most favourable biodistribution profile, combining a good tumor retention with the highest tumor-to-organ ratios, with the kidneys as the dose-limiting organ. Conclusions These findings strongly point at AU-SAR-M1 as a promising radiotherapeutic candidate when labeled with Lu-177, or other medically appealing therapeutic radiometals, especially when combined with in situ NEP-inhibition. To this goal further investigations are currently pursued.

Funder

Cancerfonden

Vetenskapsrådet

Uppsala University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3