Radiosynthesis and preclinical evaluation of [11C]SNX-ab as an Hsp90α,β isoform-selective PET probe for in vivo brain and tumour imaging

Author:

Cools Romy,Vermeulen Koen,Narykina Valeria,Leitao Renan C. F.,Bormans GuyORCID

Abstract

Abstract Background The molecular chaperone, Hsp90, is a key player in the protein quality control system that maintains homeostasis under cellular stress conditions. It is a homodimer with ATP-dependent activity, and is a prominent member of the chaperone machinery that stabilizes, matures and (re)folds an extensive list of client proteins. Hsp90 occurs as four isoforms, cytosolic Hsp90α and Hsp90β, mitochondrial TRAP1 and Grp94 present in the endoplasmic reticulum. An aberrant role of Hsp90 has been attributed to several cancers and neurodegenerative disorders. Consequently, Hsp90 has emerged as an attractive therapeutic target. However, pan-Hsp90 inhibition often leads to detrimental dose-limiting toxicities. Novel strategies for Hsp90-targeted therapy intend to avoid this by using isoform-specific Hsp90 inhibition. In this respect, the radiosynthesis of carbon-11 labeled SNX-ab was developed and [11C]SNX-ab was evaluated as a Hsp90α,β isoform-selective PET probe, which could potentially allow to quantify in vivo Hsp90α,β expression. Results [11C]SNX-ab was synthesized with excellent radiochemical yields of 45% and high radiochemical purity (> 98%). In vitro autoradiography studies on tissue slices of healthy mouse brain, mouse B16.F10 melanoma and U87 glioblastoma using homologous (SNX-ab, SNX-0723) and heterologous (Onalespib and PU-H71) Hsp90 inhibitors demonstrated only limited reduction of tracer binding, indicating that the binding of [11C]SNX-ab was not fully Hsp90-specific. Similarly, [11C]SNX-ab binding to U87 cells was not efficiently inhibited by Hsp90 inhibitors. Ex vivo biodistribution studies in healthy mice revealed limited brain exposure of [11C]SNX-ab and predominantly hepatobiliary clearance, which was confirmed by in vivo full-body dynamic µPET studies. Conclusion Our results suggest that [11C]SNX-ab is not an ideal probe for in vivo visualization and quantification of Hsp90α/β expression levels in tumour and brain. Future research in the development of next-generation Hsp90 isoform-selective PET tracers is warranted to dissect the role played by each isoform towards disease pathology and support the development of subtype-specific Hsp90 therapeutics.

Funder

KULeuven

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Pharmacology,Radiology, Nuclear Medicine and imaging,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3