Production of radiometals in liquid targets

Author:

do Carmo Sergio J. C.,Scott Peter J. H.,Alves FranciscoORCID

Abstract

AbstractOver the last several years, the use of radiometals has gained increasing relevance in supporting the continuous development of new, complementary and more specific biological targeting agents. Radiopharmaceuticals labelled with radiometals from elements such as Tc, Zr, Y, Ga and Cu received increasing attention as they find application in both diagnostic SPECT and PET imaging techniques and radiotherapeutic purposes. Such interest stems from the wide variety of radionuclides available with distinct and complementary nuclear decay characteristics to choose from with unequalled specificity, but can also be explained by growing demand in targeted radionuclide therapy. As a result, as routine supply of these radiometals becomes mandatory, studies describing their production processes have expanded rapidly. Although most radiometals are traditionally provided by the irradiation of solid targets in specialized cyclotrons, recently developed techniques for producing radiometals through the irradiation of liquid targets have received growing attention due to compatibility with commonly available small medical cyclotrons, promising characteristics and encouraging results. Irradiating liquid targets to produce radiometals appears as a fast, reliable, convenient and cost-efficient alternative to the conventional solid target techniques, characterized by complex and time-consuming pre- and post-irradiation target handling. Production of radiometals in liquid targets incorporated to complete manufacturing processes for daily routine is already recognized as a viable alternative and complementary supply methodology to existing solid target based infrastructures to satisfy growing clinical demands. For instance, several sites already use the approach to produce 68Ga-radiopharmaceuticals for clinical use. This review article covers the production of common radiometals with clinical potential through the irradiation liquid targets. A comparison with the traditional solid target irradiation methods is presented when relevant.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Pharmacology,Radiology, Nuclear Medicine and imaging,Analytical Chemistry

Reference87 articles.

1. Adam-Rebeles R, Hermanne A, Van den Winkel P, De Vis L, Waegeneer R, Tarkanyi F, Takacs S, Takacs MP. 68Ge/68Ga production revisited: excitation curves, target preparation and chemical separation – purification. Radiochim Acta. 2013;101:481.

2. Alves F, Alves VH, Do Carmo SJC, Neves ACB, Silva M, Abrunhosa AJ. Production of copper-64 and gallium-68 with a medical cyclotron using liquid targets. Mod Phys Lett A. 2017b;32(17):1740013–1.

3. Alves F, Alves VH, Neves ACB, Do Carmo SJC, Natergal B, Hellas V, Kral E, Gonçalves-Gameiro C, Abrunhosa AJ. Cyclotron production of Ga-68 for human use from liquid targets: from theory to practice, vol. 1845: AIP Conference Proceedings; 2017a. p. 020001.

4. Alves VHP, do Carmo SJC, Alves F, Abrunhosa AJ. Automated purification of radiometals produced by liquid targets. Instruments. 2018;2(3):17.

5. Anderson CJ, Green MA, Fujibayashi Y. Chemistry of copper radionuclides and radiopharmaceutical products in handbook of radiopharmaceuticals: radiochemistry and applications, edited by Welch MJ and Redvanly CS. Hoboken: Wiley; 2003. p. 401–22.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3