Author:
Dijkman Ronald,Jebbink Maarten F,Wilbrink Berry,Pyrc Krzysztof,Zaaijer Hans L,Minor Philip D,Franklin Sally,Berkhout Ben,Thiel Volker,van der Hoek Lia
Abstract
Abstract
Background
The genome of coronaviruses contains structural and non-structural genes, including several so-called accessory genes. All group 1b coronaviruses encode a single accessory protein between the spike and envelope genes, except for human coronavirus (HCoV) 229E. The prototype virus has a split gene, encoding the putative ORF4a and ORF4b proteins. To determine whether primary HCoV-229E isolates exhibit this unusual genome organization, we analyzed the ORF4a/b region of five current clinical isolates from The Netherlands and three early isolates collected at the Common Cold Unit (CCU) in Salisbury, UK.
Results
All Dutch isolates were identical in the ORF4a/b region at amino acid level. All CCU isolates are only 98% identical to the Dutch isolates at the nucleotide level, but more closely related to the prototype HCoV-229E (>98%). Remarkably, our analyses revealed that the laboratory adapted, prototype HCoV-229E has a 2-nucleotide deletion in the ORF4a/b region, whereas all clinical isolates carry a single ORF, 660 nt in size, encoding a single protein of 219 amino acids, which is a homologue of the ORF3 proteins encoded by HCoV-NL63 and PEDV.
Conclusion
Thus, the genome organization of the group 1b coronaviruses HCoV-NL63, PEDV and HCoV-229E is identical. It is possible that extensive culturing of the HCoV-229E laboratory strain resulted in truncation of ORF4. This may indicate that the protein is not essential in cell culture, but the highly conserved amino acid sequence of the ORF4 protein among clinical isolates suggests that the protein plays an important role in vivo.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference26 articles.
1. Holmes KV, Lai MMC: Coronaviridae : The viruses and their replication. In Fields Virology. Third edition. Edited by: Fields BN, Knipe DM, Howley PM, et al. Philadelphia: Lippincott-Raven Publishers; 1996:1075-1093.
2. de Haan CA, Masters PS, Shen X, Weiss S, Rottier PJ: The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host. Virol 2002, 296: 177-189. 10.1006/viro.2002.1412
3. Herrewegh AA, Vennema H, Horzinek MC, Rottier PJ, de Groot RJ: The molecular genetics of feline coronaviruses: comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes. Virol 1995, 212: 622-631. 10.1006/viro.1995.1520
4. Haijema BJ, Volders H, Rottier PJ: Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis. J Virol 2004, 78: 3863-3871. 10.1128/JVI.78.8.3863-3871.2004
5. Gorbalenya AE, Snijder EJ, Spaan WJ: Severe acute respiratory syndrome coronavirus phylogeny: toward consensus. J Virol 2004, 78: 7863-7866. 10.1128/JVI.78.15.7863-7866.2004
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献