Temperature sensitive influenza A virus genome replication results from low thermal stability of polymerase-cRNA complexes

Author:

Dalton Rosa M,Mullin Anne E,Amorim Maria Joao,Medcalf Elizabeth,Tiley Laurence S,Digard Paul

Abstract

Abstract Background The RNA-dependent RNA polymerase of Influenza A virus is a determinant of viral pathogenicity and host range that is responsible for transcribing and replicating the negative sense segmented viral genome (vRNA). Transcription produces capped and polyadenylated mRNAs whereas genome replication involves the synthesis of an alternative plus-sense transcript (cRNA) with unmodified termini that is copied back to vRNA. Viral mRNA transcription predominates at early stages of viral infection, while later, negative sense genome replication is favoured. However, the "switch" that regulates the transition from transcription to replication is poorly understood. Results We show that temperature strongly affects the balance between plus and minus-sense RNA synthesis with high temperature causing a large decrease in vRNA accumulation, a moderate decrease in cRNA levels but (depending on genome segment) either increased or unchanged levels of mRNA. We found no evidence implicating cellular heat shock protein activity in this effect despite the known association of hsp70 and hsp90 with viral polymerase components. Temperature-shift experiments indicated that polymerase synthesised at 41°C maintained transcriptional activity even though genome replication failed. Reduced polymerase association with viral RNA was seen in vivo and in confirmation of this, in vitro binding assays showed that temperature increased the rate of dissociation of polymerase from both positive and negative sense promoters. However, the interaction of polymerase with the cRNA promoter was particularly heat labile, showing rapid dissociation even at 37°C. This suggested that vRNA synthesis fails at elevated temperatures because the polymerase does not bind the promoter. In support of this hypothesis, a mutant cRNA promoter with vRNA-like sequence elements supported vRNA synthesis at higher temperatures than the wild-type promoter. Conclusion The differential stability of negative and positive sense polymerase-promoter complexes explains why high temperature favours transcription over replication and has implications for the control of viral RNA synthesis at physiological temperatures. Furthermore, given the different body temperatures of birds and man, these finding suggest molecular hypotheses for how polymerase function may affect host range.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3