Author:
Geiss Brian J,Pierson Theodore C,Diamond Michael S
Abstract
Abstract
Background
West Nile virus is an emerging human pathogen for which specific antiviral therapy has not been developed. Recent studies have suggested that RNA interference (RNAi) has therapeutic potential as a sequence specific inhibitor of viral infection. Here, we examine the ability of exogenous small interfering RNAs (siRNAs) to block the replication of West Nile virus in human cells.
Results
WNV replication and infection was greatly reduced when siRNA were introduced by cytoplasmic-targeted transfection prior to but not after the establishment of viral replication. WNV appeared to evade rather than actively block the RNAi machinery, as sequence-specific reduction in protein expression of a heterologous transgene was still observed in WNV-infected cells. However, sequence-specific decreases in WNV RNA were observed in cells undergoing active viral replication when siRNA was transfected by an alternate method, electroporation.
Conclusion
Our results suggest that actively replicating WNV RNA may not be exposed to the cytoplasmic RNAi machinery. Thus, conventional lipid-based siRNA delivery systems may not be adequate for therapy against enveloped RNA viruses that replicate in specialized membrane compartments.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献