Cellular phenotype impacts human immunodeficiency virus type 1 viral protein R subcellular localization

Author:

Ferrucci Adriano,Nonnemacher Michael R,Wigdahl Brian

Abstract

Abstract Background Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) is a virion-associated regulatory protein that functions at several points within the viral life cycle and has been shown to accumulate primarily in the nucleus and at the nuclear envelope. However, most studies have investigated Vpr localization employing cell types irrelevant to HIV-1 pathogenesis. To gain a better understanding of how cellular phenotype might impact HIV-1 Vpr intracellular localization, Vpr localization was examined in several cell lines representing major cellular targets for HIV-1 infection within the peripheral blood, bone marrow, and central nervous system (CNS). Results Utilizing a green fluorescent protein-tagged Vpr, we detected Vpr mainly in foci inside the nucleus, at the nuclear envelope, and around the nucleoli, with dispersed accumulation in the cytoplasm of human endothelial kidney 293T cells. No differences were observed in Vpr localization pattern with respect to either the location of the tag (N- or C-terminus) or the presence of other viral proteins. Subsequently, the Vpr localization pattern was explored in two primary HIV-1 target cells within the peripheral blood: the CD4+ T lymphocyte (represented by the Jurkat CD4+ T-cell line) and the monocyte-macrophage (represented by the U-937 cell line). Vpr was found primarily in speckles within the cytoplasm of the Jurkat T cells, whereas it accumulated predominantly intranuclearly in U-937 monocytic cells. These patterns differ from that observed in a bone marrow progenitor cell line (TF-1), wherein Vpr localized mainly at the nuclear envelope with some intranuclear punctuate staining. Within the CNS, we examined two astroglioma cell lines and found that Vpr displayed a perinuclear and cytoplasmic distribution. Conclusions The results suggest that the pattern of Vpr localization depends on cellular phenotype, probably owing to interactions between Vpr and cell type-specific host factors. These interactions, in turn, are likely coupled to specific roles that Vpr plays in each cell type within the context of the viral life cycle. Phenotype-specific Vpr localization patterns might also provide an explanation with respect to Vpr secretion or release from HIV-1-infected cells within the peripheral blood and CNS.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3