Author:
Kasahara Daigo,Takara Azusa,Takahashi Yoshiaki,Kodama Akira,Tanaka Reiko,Ansari Aftab A,Tanaka Yuetsu
Abstract
Abstract
Background
OX40 ligand (OX40L) co-stimulates and differentiates T cells via ligation of OX40 that is transiently induced on T cells upon activation, resulting in prolonged T cell survival and enhanced cytokine production by T cells. This view has led to the targeting of OX40 as a strategy to boost antigen specific T cells in the context of vaccination. In addition, the ligation of OX40 has also been shown to inhibit infection by CCR5-utilizing (R5) but not CXCR4-utilizing (X4) human immunodeficiency virus type-1 (HIV-1) via enhancement of production of CCR5-binding β-chemokines. It was reasoned that human T cell leukemia virus type-I (HTLV-1) immortalized T cell lines that express high levels of OX40L could serve as an unique source of physiologically functional OX40L. The fact that HTLV-1+ T cell lines simultaneously also express high levels of OX40 suggested a potential limitation.
Results
Results of our studies showed that HTLV-1+ T cell lines bound exogenous OX40 but not OX40L, indicating that HTLV-1+ T cell lines express an active form of OX40L but an inactive form of OX40. Anti-OX40 non-blocking monoclonal antibody (mAb), but not blocking mAb, stained HTLV-1+ T cell lines, suggesting that the OX40 might be saturated with endogenous OX40L. Functionality of the OX40L was confirmed by the fact that a paraformaldehyde (PFA)-fixed HTLV-1+ T cell lines inhibited the infection of autologous activated peripheral blood mononuclear cells (PBMCs) with R5 HIV-1 which was reversed by either anti-OX40L blocking mAb or a mixture of neutralizing mAbs against CCR5-binding β-chemokines.
Conclusions
Altogether, these results demonstrated that autologous T cell lines immortalized by HTLV-1 can be utilized as a conventional source of physiologically functional OX40L.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference40 articles.
1. Ishii N, Takahashi T, Soroosh P, Sugamura K: OX40-OX40 ligand interaction in T-cell-mediated immunity and immunopathology. Adv Immunol 2010, 105: 63-98.
2. Croft M, Duan W, Choi H, Eun SY, Madireddi S, Mehta A: TNF superfamily in inflammatory disease: translating basic insights. Trends Immunol 2012, 33: 144-152. 10.1016/j.it.2011.10.004
3. Tanaka Y, Inoi T, Tozawa H, Yamamoto N, Hinuma Y: A glycoprotein antigen detected with new monoclonal antibodies on the surface of human lymphocytes infected with human T-cell leukemia virus type-I (HTLV-I). Int J Cancer 1985, 36: 549-555. 10.1002/ijc.2910360506
4. Miura S, Ohtani K, Numata N, Niki M, Ohbo K, Ina Y, Gojobori T, Tanaka Y, Tozawa H, Nakamura M, et al.: Molecular cloning and characterization of a novel glycoprotein, gp34, that is specifically induced by the human T-cell leukemia virus type I transactivator p40tax. Mol Cell Biol 1991, 11: 1313-1325.
5. Ohshima Y, Tanaka Y, Tozawa H, Takahashi Y, Maliszewski C, Delespesse G: Expression and function of OX40 ligand on human dendritic cells. J Immunol 1997, 159: 3838-3848.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献