Author:
Bester Rachelle,Jooste Anna E C,Maree Hans J,Burger Johan T
Abstract
Abstract
Background
Grapevine leafroll-associated virus 3 (GLRaV-3) is the main contributing agent of leafroll disease worldwide. Four of the six GLRaV-3 variant groups known have been found in South Africa, but their individual contribution to leafroll disease is unknown. In order to study the pathogenesis of leafroll disease, a sensitive and accurate diagnostic assay is required that can detect different variant groups of GLRaV-3.
Methods
In this study, a one-step real-time RT-PCR, followed by high-resolution melting (HRM) curve analysis for the simultaneous detection and identification of GLRaV-3 variants of groups I, II, III and VI, was developed. A melting point confidence interval for each variant group was calculated to include at least 90% of all melting points observed. A multiplex RT-PCR protocol was developed to these four variant groups in order to assess the efficacy of the real-time RT-PCR HRM assay.
Results
A universal primer set for GLRaV-3 targeting the heat shock protein 70 homologue (Hsp70h) gene of GLRaV-3 was designed that is able to detect GLRaV-3 variant groups I, II, III and VI and differentiate between them with high-resolution melting curve analysis. The real-time RT-PCR HRM and the multiplex RT-PCR were optimized using 121 GLRaV-3 positive samples. Due to a considerable variation in melting profile observed within each GLRaV-3 group, a confidence interval of above 90% was calculated for each variant group, based on the range and distribution of melting points. The intervals of groups I and II could not be distinguished and a 95% joint confidence interval was calculated for simultaneous detection of group I and II variants. An additional primer pair targeting GLRaV-3 ORF1a was developed that can be used in a subsequent real-time RT-PCR HRM to differentiate between variants of groups I and II. Additionally, the multiplex RT-PCR successfully validated 94.64% of the infections detected with the real-time RT-PCR HRM.
Conclusion
The real-time RT-PCR HRM provides a sensitive, automated and rapid tool to detect and differentiate different variant groups in order to study the epidemiology of leafroll disease.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference32 articles.
1. Martelli GP, Agranovsky AA, Bar-Joseph M, Boscia D, Candresse T, Coutts RHA, Dolja VV, Falk BW, Gonsalves D, Jelkmann W, Karasev AV, Minafra A, Namba S, Vetten HJ, Wisler GC, Yoshikawa N: The family Closteroviridae revised. Arch Virol. 2002, 147 (10): 2039-2044. 10.1007/s007050200048.
2. Jooste AEC, Maree HJ, Bellstedt DU, Goszczynski DE, Pietersen G, Burger JT: Three genetic grapevine leafroll-associated virus 3 variants identified from South African vineyards show high variability in their 5’UTR. Arch Virol. 2010, 155: 1997-2006. 10.1007/s00705-010-0793-y.
3. Jarugula S, Gowda S, Dawson WO, Naidu RA: 3'-coterminal subgenomic RNAs and putative cis-acting elements of Grapevine leafroll-associated virus 3 reveals 'unique' features of gene expression strategy in the genus Ampelovirus. Virol J. 2010, 7 (180): 1-14.
4. Ling K-S, Zhu H-Y, Gonsalves D: Complete nucleotide sequence and genome organization of Grapevine leafroll-associated virus 3, type member of the genus Ampelovirus. J Gen Virol. 2004, 85: 2099-2102. 10.1099/vir.0.80007-0.
5. Engel EA, Girardi C, Escobar PF, Arredondo V, Dominguez C, Perez-Acle T, Valenzuela PD: Genome analysis and detection of a Chilean isolate of Grapevine leafroll associated virus-3. Virus Genes. 2008, 37 (1): 110-118. 10.1007/s11262-008-0241-1.
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献