Simultaneous detection and differentiation of Rice black streaked dwarf virus (RBSDV) and Southern rice black streaked dwarf virus (SRBSDV) by duplex real time RT-PCR

Author:

Zhang Peng,Mar Thi Thi,Liu Wenwen,Li Li,Wang Xifeng

Abstract

Abstract Background The diseases caused by Rice black streaked dwarf virus (RBSDV) and Southern rice black streaked dwarf virus (SRBSDV) have been occurring epidemically in China and southeastern Asia in recent years. A sensitive, reliable and quantitative method is required to detect and distinguish for RBSDV and SRBSDV in rice and vector insects. Results We developed a sensitive and lineage-specific duplex real time RT-qPCR for detection of RBSDV and SRBSDV in a single or/and double infection in rice samples. The duplex RT-qPCR was optimized using standard samples transcribed by T7 Large Scale RNA Production System in vitro. We developed a reliable system for duplex RT-qPCR, in which its co-efficiency of RBSDV and SRBSDV, were 91.6% and 90.7%, respectively. The coefficient of determination was more than 0.990; the slope of linear equation was −3.542, and −3.567, respectively. Out of 30 samples collected in North and Central China, which were suspected to be infected with these two viruses, 10 samples were detected RBSDV positive by RT-PCR and 12 samples by RT-qPCR. No mixed infections were found. Simultaneously, out of total 60 samples collected from Southern China, which were also suspected to be infected with these two viruses, 41 samples were determined SRBSDV positive by RT-PCR and 47 samples by RT-qPCR. Also in this case no mixed infections were found. The rice genes eEF-1a and UBQ5 were selected as internal controls for quantification assay also performed as good expression stability. Conclusion The duplex RT-qPCR assay provided as a sufficiently sensitive, specific, accurate, reproducible and rapid tool for the detection and differentiation of RBSDV and SRBSDV. The RT-qPCR assay can be used in routine diagnostic of these two viruses in order to study the disease epidemiology in rice crops.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3