Double suicide genes selectively kill human umbilical vein endothelial cells

Author:

Jia Weiguo,Mei Longyong,Wang Yanping,Liu Lunxu,Che Guowei

Abstract

Abstract Background To construct a recombinant adenovirus containing CDglyTK double suicide genes and evaluate the killing effect of the double suicide genes driven by kinase domain insert containing receptor (KDR) promoter on human umbilical vein endothelial cells. Methods Human KDR promoter, Escherichia coli (E. coli) cytosine deaminase (CD) gene and the herpes simplex virus-thymidine kinase (TK) gene were cloned using polymerase chain reaction (PCR). Plasmid pKDR-CDglyTK was constructed with the KDR promoter and CDglyTK genes. A recombinant adenoviral plasmid AdKDR-CDglyTK was then constructed and transfected into 293 packaging cells to grow and harvest adenoviruses. KDR-expressing human umbilical vein endothelial cells (ECV304) and KDR-negative liver cancer cell line (HepG2) were infected with the recombinant adenoviruses at different multiplicity of infection (MOI). The infection rate was measured by green fluorescent protein (GFP) expression. The infected cells were cultured in culture media containing different concentrations of prodrugs ganciclovir (GCV) and/or 5-fluorocytosine (5-FC). The killing effects were measured using two different methods, i.e. annexin V-FITC staining and terminal transferase-mediated dUTP nick end-labeling (TUNEL) staining. Results Recombinant adenoviruses AdKDR-CDglyTK were successfully constructed and they infected ECV304 and HepG2 cells efficiently. The infection rate was dependent on MOI of recombinant adenoviruses. ECV304 cells infected with AdKDR-CDglyTK were highly sensitive to GCV and 5-FC. The cell survival rate was dependent on both the concentration of the prodrugs and the MOI of recombinant adenoviruses. In contrast, there were no killing effects in the HepG2 cells. The combination of two prodrugs was much more effective in killing ECV304 cells than GCV or 5-FC alone. The growth of transgenic ECV304 cells was suppressed in the presence of prodrugs. Conclusion AdKDR-CDglyTK/double prodrog system may be a useful method for suppressing tumor angiogenesis.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3