Author:
Yang Chin-Fen,Wang Chiaoyin K,Tollefson Sharon J,Piyaratna Rohith,Lintao Linda D,Chu Marla,Liem Alexis,Mark Mary,Spaete Richard R,Crowe James E,Williams John V
Abstract
Abstract
Background
Human metapneumovirus (HMPV) is an important cause of acute respiratory illness in children. We examined the diversity and molecular evolution of HMPV using 85 full-length F (fusion) gene sequences collected over a 20-year period.
Results
The F gene sequences fell into two major groups, each with two subgroups, which exhibited a mean of 96% identity by predicted amino acid sequences. Amino acid identity within and between subgroups was higher than nucleotide identity, suggesting structural or functional constraints on F protein diversity. There was minimal progressive drift over time, and the genetic lineages were stable over the 20-year period. Several canonical amino acid differences discriminated between major subgroups, and polymorphic variations tended to cluster in discrete regions. The estimated rate of mutation was 7.12 × 10-4 substitutions/site/year and the estimated time to most recent common HMPV ancestor was 97 years (95% likelihood range 66-194 years). Analysis suggested that HMPV diverged from avian metapneumovirus type C (AMPV-C) 269 years ago (95% likelihood range 106-382 years).
Conclusion
HMPV F protein remains conserved over decades. HMPV appears to have diverged from AMPV-C fairly recently.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献