Author:
He Peng,Liu Jia-Ju,He Ming,Wang Zhen-Chao,Chen Zhuo,Guo Rong,Correll James C,Yang Song,Song Bao-An
Abstract
Abstract
Background
In recent years, a disease caused by Southern rice black-streaked dwarf virus (SRBSDV) has resulted in significant loss in rice production in Southern China and has spread quickly throughout East and Southeast Asia. This virus is transmitted by an insect vector, white-backed planthopper (WBPH) Sogatella furcifera (Hemiptera: Delphacidae), in a persistent propagative manner. Aside from rice, SRBSDV can also infect numerous Poaceae plants. However, the molecular mechanism of interaction between SRBSDV and its plant or insect vector remains unclear. In order to address this, we investigated the whole viral genome relative mRNA expression level in distinct hosts and monitored their expression level in real-time in rice plants.
Methods
In this study, a reliable, rapid, and sensitive method for detecting viral gene expression transcripts is reported. A SYBR Green I based real-time polymerase chain reaction (PCR) method was adopted for the quantitative detection of SRBSDV gene expression in different hosts and real-time changes in gene expression in rice.
Results
Compared to the relative mRNA expression level of the whole genome of SRBSDV, P3, P7-1, and P9-2 were dominantly expressed in rice and WBPH. Similarly, these genes also exhibited high expression levels in corn, suggesting that they have more important functions than other viral genes in the interaction between SRBSDV and hosts, and that they could be used as molecular detection target genes of SRBSDV. In contrast, the levels of P6 and P10 were relative low. Western blotting analysis partially was also verified our qPCR results at the level of protein expression. Analysis of the real-time changes in SRBSDV-infected rice plants revealed four distinct temporal expression patterns of the thirteen genes. Moreover, expression levels of P1 and other genes were significantly down-regulated on days 14 and 20, respectively.
Conclusion
SRBSDV genes showed similar expression patterns in distinct hosts (rice, corn, and WBPH), indicating that SRBSDV uses the same infection strategy in plant and insect hosts. P3, P7-1, and P9-2 were the dominantly expressed genes in the three tested hosts. Therefore, they are likely to be genes with the most crucial function and could be used as sensitive molecular detection targets for SRBSDV. Furthermore, real-time changes in SRBSDV genes provided a basis for understanding the mechanism of interaction between SRBSDV and its hosts.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference36 articles.
1. Ha VC, Nguyen VH, Vu TM, Masaru M: Rice dwarf disease in north Vietnam in 2009 is caused by southern rice black-streaked dwarf virus (SRBSDV). Bull Inst Trop Agric Kyushu Univ. 2009, 32: 85-92.
2. Guo R, Zhou G-H, Zhang S-G: Character of rice Southern black-streaked disease and its control strategy. China Plant Prot. 2010, 30: 17-20.
3. Chen Z, Song B-A: The Technology of Prevention and Control on Southern Rice Black-Streaked Dwarf Virus. 2011, Beijing, China: Chemical Industrial Press, 1-3.
4. Hoang AT, Zhang HM, Yang J, Chen JP, Hébrard E, Zhou GH, Vinh VN, Cheng JA: Identification, characterization, and distribution of southern rice black-streaked dwarf virus in Vietnam. Plant Dis Rep. 2011, 2011: 1063-1069.
5. Pu L-L, Xie G-H, Ji C-Y, Ling B, Zhang M-X, Xu D-L, Zhou G-H: Transmission characteristics of Southern rice black-streaked dwarf virus by rice planthoppers. Crop Prot. 2012, 41: 71-76.