Inhibition of HIV-1 infection by aqueous extracts of Prunella vulgaris L.

Author:

Oh ChoonSeok,Price Jason,Brindley Melinda A,Widrlechner Mark P,Qu Luping,McCoy Joe-Ann,Murphy Patricia,Hauck Cathy,Maury Wendy

Abstract

Abstract Background The mint family (Lamiaceae) produces a wide variety of constituents with medicinal properties. Several family members have been reported to have antiviral activity, including lemon balm (Melissa officinalis L.), sage (Salvia spp.), peppermint (Mentha × piperita L.), hyssop (Hyssopus officinalis L.), basil (Ocimum spp.) and self-heal (Prunell a vulgaris L.). To further characterize the anti-lentiviral activities of Prunella vulgaris, water and ethanol extracts were tested for their ability to inhibit HIV-1 infection. Results Aqueous extracts contained more anti-viral activity than did ethanol extracts, displaying potent antiviral activity against HIV-1 at sub μg/mL concentrations with little to no cellular cytotoxicity at concentrations more than 100-fold higher. Time-of-addition studies demonstrated that aqueous extracts were effective when added during the first five hours following initiation of infection, suggesting that the botanical constituents were targeting entry events. Further analysis revealed that extracts inhibited both virus/cell interactions and post-binding events. While only 40% inhibition was maximally achieved in our virus/cell interaction studies, extract effectively blocked post-binding events at concentrations similar to those that blocked infection, suggesting that it was targeting of these latter steps that was most important for mediating inhibition of virus infectivity. Conclusions We demonstrate that aqueous P. vulgaris extracts inhibited HIV-1 infectivity. Our studies suggest that inhibition occurs primarily by interference of early, post-virion binding events. The ability of aqueous extracts to inhibit early events within the HIV life cycle suggests that these extracts, or purified constituents responsible for the antiviral activity, are promising microbicides and/or antivirals against HIV-1.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Reference36 articles.

1. Chiej R: Encyclopaedia of Medicinal Plants. MacDonald; 1984.

2. Hamada T: Studies on the medicinal plant in the "Sambutsu-cho" of Higo Province possessed by the Kumamoto clan (II): on the medicinal herbs. Yakushigaku Zasshi 1993, 28: 63-72.

3. Mattioli PA: Kreuterbuch. Frankfurt am Main, Verlegung Sigmund Feyerabends, Peter Fischers, und Heinrich Dacken; 1586.

4. Pinkas M, Trotin F, Feng M, Torck M: Use, chemistry and pharmacology of the Chinese medicinal plants. Fitotherapia 1994, 55: 343-353.

5. Tabba HD, Chang RS, Smith KM: Isolation, purification, and partial characterization of prunellin, an anti-HIV component from aqueous extracts of Prunella vulgaris. Antiviral Res 1989, 11: 263-273. 10.1016/0166-3542(89)90036-3

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3