Author:
Van Poucke Sjouke GM,Nicholls John M,Nauwynck Hans J,Van Reeth Kristien
Abstract
Abstract
Background
Throughout the history of human influenza pandemics, pigs have been considered the most likely "mixing vessel" for reassortment between human and avian influenza viruses (AIVs). However, the replication efficiencies of influenza viruses from various hosts, as well as the expression of sialic acid (Sia) receptor variants in the entire porcine respiratory tract have never been studied in detail. Therefore, we established porcine nasal, tracheal, bronchial and lung explants, which cover the entire porcine respiratory tract with maximal similarity to the in vivo situation. Subsequently, we assessed virus yields of three porcine, two human and six AIVs in these explants. Since our results on virus replication were in disagreement with the previously reported presence of putative avian virus receptors in the trachea, we additionally studied the distribution of sialic acid receptors by means of lectin histochemistry. Human (Siaα2-6Gal) and avian virus receptors (Siaα2-3Gal) were identified with Sambucus Nigra and Maackia amurensis lectins respectively.
Results
Compared to swine and human influenza viruses, replication of the AIVs was limited in all cultures but most strikingly in nasal and tracheal explants. Results of virus titrations were confirmed by quantification of infected cells using immunohistochemistry. By lectin histochemistry we found moderate to abundant expression of the human-like virus receptors in all explant systems but minimal binding of the lectins that identify avian-like receptors, especially in the nasal, tracheal and bronchial epithelium.
Conclusions
The species barrier that restricts the transmission of influenza viruses from one host to another remains preserved in our porcine respiratory explants. Therefore this system offers a valuable alternative to study virus and/or host properties required for adaptation or reassortment of influenza viruses. Our results indicate that, based on the expression of Sia receptors alone, the pig is unlikely to be a more appropriate mixing vessel for influenza viruses than humans. We conclude that too little is known on the exact mechanism and on predisposing factors for reassortment to assess the true role of the pig in the emergence of novel influenza viruses.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference46 articles.
1. Brown IH, Harris PA, McCauley JW, Alexander DJ: Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype. J Gen Virol 1998, 79: 2947-2955.
2. Castrucci MR, Donatelli I, Sidoli L, Barigazzi G, Kawaoka Y, Webster RG: Genetic Reassortment between Avian and Human Influenza A Viruses in Italian Pigs. Virology 1993, 193: 503-506. 10.1006/viro.1993.1155
3. Zhou NN, Senne DA, Landgraf JS, Swenson SL, Erickson G, Rossow K, Liu L, Yoon KJ, Krauss S, Webster RG: Genetic reassortment of avian, swine, and human influenza A viruses in American pigs. J Virol 1999, 73: 8851-8856.
4. Brown IH: The epidemiology and evolution of influenza viruses in pigs. Vet Microbiol 2000, 74: 29-46. 10.1016/S0378-1135(00)00164-4
5. Olsen CW, Brown IH, Easterday BC, Van Reeth K: Swine Influenza. In Diseases of Swine. 9th edition. Edited by: Straw BE, Zimmerman JJ, D'Allaire S, Taylor DJ. Ames: Iowa State University Press; 2006:469-482.
Cited by
146 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献