Author:
Li Jinnan,Hu Haixia,Yu Qingzhong,Diel Diego G,Li De-shan,Miller Patti J
Abstract
Abstract
Background
Many viruses have evolved multiple strategies to prevent super infection of host cells by more than one virion. This phenomenon, known as super infection exclusion, may play an important role on virus evolution because it can affect the frequency of reassortment and/or recombination. Newcastle disease virus (NDV), a negative sense single-stranded RNA virus, is characterized by its continuous evolutionary dynamics and by a low frequency of recombination events. However, the mechanisms that contribute to the low recombination rates on NDV are still not completely understood.
Methods
In this study we assessed the ability of two NDV strains (LaSota and B1) to super infect host cells in vitro. We generated a recombinant NDV strain LaSota expressing the red fluorescent protein (RFP) and used it in co-infection assays with a related NDV strain B1 expressing the green fluorescent protein (GFP). DF-1 cells were inoculated with both viruses at the same time or at different intervals between primary infection and super infection.
Results
When both viruses were inoculated at the same time point, a 27% co-infection rate was observed, whereas when they were inoculated at different time points the super infection rates decreased to levels as low as 1.4%.
Conclusions
These results indicate that although different NDV strains can co-infect host cells in vitro, the super infection rates are low, specially as the time between the primary infection and super infection increases. These results confirm the occurrence of super infection exclusion between different strains of NDV.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference18 articles.
1. Alexander DJ, Senne DA: Newcastle disease, other avian paramyxoviruses, and pneumovirus infections. Diseases of Poultry. Edited by: Saif YM, Fadly AM, Glisson JR, McDougald LR, Nolan LK, Swayne DE. 2008, Iowa State University Press, Ames, 75-116. 12
2. Miller PJ, Decanini EL, Afonso CL: Newcastle disease: evolution of genotypes and the related diagnostic challenges. Infect Genet Evol. 2010, 10: 26-35. 10.1016/j.meegid.2009.09.012.
3. Diel DG, da Silva LH, Liu H, Wang Z, Miller PJ, Afonso CL: Genetic diversity of avian paramyxovirus type 1: Proposal for a unified nomenclature and classification system of Newcastle disease virus genotypes. Infect Genet Evol. 2012, 12: 1770-1779. 10.1016/j.meegid.2012.07.012.
4. Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S: Rapid evolution of RNA genomes. Science. 1982, 215: 1577-1585. 10.1126/science.7041255.
5. Chare ER, Gould EA, Holmes EC: Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J Gen Virol. 2003, 84: 2691-2703. 10.1099/vir.0.19277-0.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献