Author:
Washington Amber T,Singh Gyanendra,Aiyar Ashok
Abstract
Abstract
Background
Many pathogens exist in multiple physiological niches within the host. Differences between aerobic and anaerobic conditions are known to alter the expression of bacterial virulence factors, typically through the conditional activity of transactivators that modulate their expression. More recently, changes in physiological niches have been shown to affect the expression of viral genes. For many viruses, differences in oxygen tension between hypoxia and normoxia alter gene expression or function. Oxygen tension also affects many mammalian transactivators including AP-1, NFkB, and p53 by affecting the reduced state of critical cysteines in these proteins. We have recently determined that an essential cys-x-x-cys motif in the EBNA1 transactivator of Epstein-Barr virus is redox-regulated, such that transactivation is favoured under reducing conditions. The crucial Tat transactivator of human immunodeficiency virus (HIV) has an essential cysteine-rich region, and is also regulated by redox. Contrary to EBNA1, it is reported that Tat's activity is increased by oxidative stress. Here we have compared the effects of hypoxia, oxidative stress, and cellular redox modulators on EBNA1 and Tat.
Results
Our results indicate that unlike EBNA1, Tat is less active during hypoxia. Agents that generate hydroxyl and superoxide radicals reduce EBNA1's activity but increase transactivation by Tat. The cellular redox modulator, APE1/Ref-1, increases EBNA1's activity, without any effect on Tat. Conversely, thioredoxin reductase 1 (TRR1) reduces Tat's function without any effect on EBNA1.
Conclusions
We conclude that oxygen partial pressure and oxidative stress affects the functions of EBNA1 and Tat in a dramatically opposed fashion. Tat is more active during oxidative stress, whereas EBNA1's activity is compromised under these conditions. The two proteins respond to differing cellular redox modulators, suggesting that the oxidized cysteine adduct is a disulfide bond(s) in Tat, but sulfenic acid in EBNA1. The effect of oxygen partial pressure on transactivator function suggests that changes in redox may underlie differences in virus-infected cells dependent upon the physiological niches they traffic to.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference57 articles.
1. Star-Lack JM, Adalsteinsson E, Adam MF, Terris DJ, Pinto HA, Brown JM, Spielman DM: In vivo 1H MR spectroscopy of human head and neck lymph node metastasis and comparison with oxygen tension measurements. AJNR Am J Neuroradiol 2000, 21: 183-193.
2. Krieger JA, Landsiedel JC, Lawrence DA: Differential in vitro effects of physiological and atmospheric oxygen tension on normal human peripheral blood mononuclear cell proliferation, cytokine and immunoglobulin production. Int J Immunopharmacol 1996, 18: 545-552. 10.1016/S0192-0561(96)00057-4
3. Dardzinski BJ, Sotak CH: Rapid tissue oxygen tension mapping using 19F inversion-recovery echo-planar imaging of perfluoro-15-crown-5-ether. Magn Reson Med 1994, 32: 88-97. 10.1002/mrm.1910320112
4. Sahaf B, Atkuri K, Heydari K, Malipatlolla M, Rappaport J, Regulier E, Herzenberg LA: Culturing of human peripheral blood cells reveals unsuspected lymphocyte responses relevant to HIV disease. Proc Natl Acad Sci USA 2008, 105: 5111-5116. 10.1073/pnas.0712363105
5. Xanthoudakis S, Miao G, Wang F, Pan YC, Curran T: Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J 1992, 11: 3323-3335.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献