Genetic diversity and recombination analysis of sweepoviruses from Brazil

Author:

Albuquerque Leonardo C,Inoue-Nagata Alice K,Pinheiro Bruna,Resende Renato O,Moriones Enrique,Navas-Castillo Jesús

Abstract

Abstract Background Monopartite begomoviruses (genus Begomovirus, family Geminiviridae) that infect sweet potato (Ipomoea batatas) around the world are known as sweepoviruses. Because sweet potato plants are vegetatively propagated, the accumulation of viruses can become a major constraint for root production. Mixed infections of sweepovirus species and strains can lead to recombination, which may contribute to the generation of new recombinant sweepoviruses. Results This study reports the full genome sequence of 34 sweepoviruses sampled from a sweet potato germplasm bank and commercial fields in Brazil. These sequences were compared with others from public nucleotide sequence databases to provide a comprehensive overview of the genetic diversity and patterns of genetic exchange in sweepoviruses isolated from Brazil, as well as to review the classification and nomenclature of sweepoviruses in accordance with the current guidelines proposed by the Geminiviridae Study Group of the International Committee on Taxonomy of Viruses (ICTV). Co-infections and extensive recombination events were identified in Brazilian sweepoviruses. Analysis of the recombination breakpoints detected within the sweepovirus dataset revealed that most recombination events occurred in the intergenic region (IR) and in the middle of the C1 open reading frame (ORF). Conclusions The genetic diversity of sweepoviruses was considerably greater than previously described in Brazil. Moreover, recombination analysis revealed that a genomic exchange is responsible for the emergence of sweepovirus species and strains and provided valuable new information for understanding the diversity and evolution of sweepoviruses.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Reference58 articles.

1. FAO Statistical Databases: [http://faostat.fao.org/],

2. Clark CA, Davis JA, Abad JA, Cuellar WJ, Fuentes S, Kreuze JF, Gibson RW, Mukasa SB, Tugume AK, Tairo FD, Valkonen JPT: Sweetpotato Viruses: 15 Years of Progress on Understanding and Managing Complex Diseases. Plant Dis. 2012, 96: 168-185. 10.1094/PDIS-07-11-0550.

3. Lotrakul P, Valverde RA: Cloning of a DNA-A-like genomic component of sweet potato leaf curl virus: nucleotide sequence and phylogenetic relationships. Molecular Plant Pathology Online. 1999, http://www.bspp.org.uk/mppol/1999/0422lotrakul/index.htm,

4. Lotrakul P, Valverde RA, Clark CA, Fauquet CM: Properties of a begomovirus isolated from sweet potato (Ipomoea batatas (L.) Lam.) infected with Sweet potato leaf curl virus. Revista Mexicana de Fitopatologia. 2003, 21: 128-136.

5. Fuentes S, Salazar LF: First report of Sweet potato leaf curl virus in Peru. Plant Dis. 2003, 87: 98-98.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3