Activation of Src, Fyn and Yes non-receptor tyrosine kinases in keratinocytes expressing human papillomavirus (HPV) type 16 E7 oncoprotein

Author:

Szalmás Anita,Gyöngyösi Eszter,Ferenczi Annamária,László Brigitta,Karosi Tamás,Csomor Péter,Gergely Lajos,Veress György,Kónya József

Abstract

Abstract Background The Src family tyrosine kinases (SFK) are cellular regulatory proteins that influence cell adhesion, proliferation, invasion and survival during tumor development. Elevated activity of Src was associated with increased cell proliferation and invasivity in human papillomavirus (HPV)-associated malignancies; therefore, transduced human foreskin keratinocytes (HFK) were used to investigate whether SFK activation is a downstream effect of papillomaviral oncoproteins. Activation of ubiquitously expressed SFKs, namely Src, Yes and Fyn, was investigated in both proliferating and differentiating keratinocytes. Results In proliferating keratinocytes, Src, Yes and Fyn mRNA levels were not affected by HPV 16 E6 or E7 oncoproteins, while at the protein level as detected by western blot, the presence of both E6 and E7 resulted in substantial increase in Src and Yes expression, but did not alter the high constitutive level of Fyn. Phospo-kinase array revealed that all ubiquitously expressed SFKs are activated by phosphorylation in the presence of HPV 16 E7 oncoprotein. Keratinocyte differentiation led to increased Yes mRNA and protein levels in all transduced cell lines, while it did not influence the Src transcription but resulted in elevated Src protein level in HPV16 E7 expressing lines. Conclusions This study revealed that HPV 16 oncoproteins upregulate Src family kinases Src and Yes via posttranscriptional mechanisms. A further effect of HPV 16 E7 oncoprotein is to enhance the activating phosphorylation of SFKs expressed in keratinocytes.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3