An efficient boundary integral equation method applicable to the analysis of non-planar fault dynamics

Author:

Ando Ryosuke,Kame Nobuki,Yamashita Teruo

Abstract

Abstract We develop a novel and efficient boundary integral equation method based on the spatio-temporal formulation for the two-dimensional dynamic and quasistatic analyses of an earthquake fault in a single scheme. A major advantage of this method is its applicability to the analysis of non-planar faults with the same degree of accuracy as to that of planar faults. Calculation time and memory requirement are reduced through the employment of asymptotic representations of the integration kernels appearing in the convolution integral. Asymptotic kernels are factorized into terms dependent on space or time alone, resulting in efficient numerical computations. In addition, the dependence on time is found to vanish in the asymptotic kernels far behind the S-wave front, which also contributes to the time-saving efficiency of the calculations. We show that, in a dynamic analysis, if a 3% error is allowed for the slip rate, computation time and memory requirement are reduced by 25% and 45%, respectively, in an in-plane fault case, and by 60% and 75%, respectively, in an anti-plane fault case. This method can be employed as a powerful numerical tool in simulating an entire earthquake cycle consisting of both quasi-static and dynamic processes with a more realistic non-planar geometry of faults.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3