Large-scale global optimization through consensus of opinions over complex networks

Author:

Askari-Sichani Omid,Jalili Mahdi

Abstract

Abstract Purpose Large-scale optimization tasks have many applications in science and engineering. There are many algorithms to perform such optimization tasks. In this manuscript, we aim at using consensus in multi-agent systems as a tool for solving large-scale optimization tasks. Method The model is based on consensus of opinions among agents interacting over a complex networked structure. For each optimization task, a number of agents are considered, each with an opinion value. These agents interact over a networked structure and update their opinions based on their best-matching neighbor in the network. A neighbor with the best value of the objective function (of the optimization task) is referred to as the best-matching neighbor for an agent. We use structures such as pure random, small-world and scale-free networks as interaction graph. The optimization algorithm is applied on a number of benchmark problems and its performance is compared with a number of classic methods including genetic algorithms, differential evolution and particle swarm optimization. Results We show that the agents could solve various large-scale optimization tasks through collaborating with each other and getting into consensus in their opinions. Furthermore, we find pure random topology better than small-world and scale-free topologies in that it leads to faster convergence to the optimal solution. Our experiments show that the proposed consensus-based optimization method outperforms the classic optimization algorithms. Conclusion Consensus in multi-agents systems can be efficiently used for large-scale optimization problems. Connectivity structure of the consensus network is effective in the convergence to the optimum solution where random structures show better performance as compared to heterogeneous networks. AMS subject classification 15A04, 54A20, 60J20, 92D25

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Modelling and Simulation

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3