Replication and replacement in dynamic delivery networks

Author:

Sobe Anita,Elmenreich Wilfried

Abstract

Abstract Purpose Content delivery in dynamic networks is a challenging task, because paths may change during delivery and content might get lost. Replication is a typical measure to increase robustness and performance. Method In previous work we proposed a hormone-based algorithm that delivers content, and optimizes the distribution of replicas. Clients express demands by creating hormones that will be released to the network. The corresponding resources are attracted by this hormone and travel towards a higher hormone concentration. This leads to a placement of content close to their most frequent requesters. In addition to that the hormone-based delivery requires an appropriate replication and clean-up strategy to balance the replicas throughout the network without exceeding the nodes’ storage limits or the networks communication capacity. Results We examine different combinations of replication and replacement strategies and evaluate them in realistic scenarios involving node failure and networks of different size and structure. Conclusion Results show that it is necessary to match the replication mechanisms with the clean-up mechanism and that the local hormone information can be used to improve the clean-up decision.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Modeling and Simulation

Reference31 articles.

1. Androutsellis-Theotokis S, Spinellis D: A survey of peer-to-peer content distribution technologies. ACM Comput Surv 2004,36(4):335–371. 10.1145/1041680.1041681

2. Böszörmenyi L, del Fabro M, Kogler M, Lux M, Marques O, Sobe A: Innovative directions in self-organized distributed multimedia systems. Multimedia Tools Appl, Springer 2011,51(2):525–553. 10.1007/s11042-010-0622-z

3. Brinkschulte U, Pacher M, Renteln A: Towards an artificial hormone system for self-organizing real-time task allocation. In Software Technologies for Embedded and Ubiquitous Systems, Volume 4761 of Lecture Notes in Computer Science. Edited by: Obermaisser R, Nah Y, Puschner P, Rammig F. Berlin Heidelberg: Springer; 2007:339–347.

4. Cha M, Kwak H, Rodriguez P, Ahn Y, Moon S: I tube, you tube, everybody tubes: analyzing the world’s largest user generated content video system. In Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement. San Diego: ACM; 2007:1–14.

5. Clarke I, Sandberg O, Wiley B, Hong T: Freenet: A distributed anonymous information storage and retrieval system. In Designing Privacy Enhancing Technologies Volume 2009 of Lecture Notes in Computer Science. Edited by: Federrath H. Berlin Heidelberg: Springer; 2001:46–66.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3