Author:
Hernández-Lemus Enrique,Siqueiros-García Jesús M
Abstract
Abstract
Purpose
Complex networks seem to be ubiquitous objects in contemporary research, both in the natural and social sciences. An important area of research regarding the applicability and modeling of graph- theoretical-oriented approaches to complex systems, is the probabilistic inference of such networks. There exist different methods and algorithms designed for this purpose, most of them are inspired in statistical mechanics and rely on information theoretical grounds. An important shortcoming for most of these methods, when it comes to disentangle the actual structure of complex networks, is that they fail to distinguish between direct and indirect interactions. Here, we suggest a method to discover and assess for such indirect interactions within the framework of information theory.
Methods
Information-theoretical measures (in particular, Mutual Information) are applied for the probabilistic inference of complex networks. Data Processing Inequality is used to find and assess for direct and indirect interactions impact in complex networks.
Results
We outline the mathematical basis of information-theoretical assessment of complex network structure and discuss some examples of application in the fields of biological systems and social networks.
Conclusions
Information theory provides to the field of complex networks analysis with effective means for structural assessment with a computational burden low enough to be useful in both, Biological and Social network analysis.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Modelling and Simulation
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献