Author:
Sinaga Makeda,Sinaga Teshome Melese,Yemane Tilhun,Tegene Elsah,Lindtsrom David,Belachew Tefera
Abstract
Abstract
Background
Application of advanced body composition measurement methods is not practical in developing countries context due to cost and unavailability of facilities. This study generated ethnic specific body fat percent prediction equation for Ethiopian adults using appropriate data.
Methods
A cross-sectional study was carried ifrom February to April 2015 among 704 randomly selected adult employees of Jimma University. Ethnic specific Ethiopian body fat percent (BF%) prediction equation was developed using a multivariable linear regression model with measured BF% as dependent variable and age, sex, and body mass index as predictor variables. Agreement between fat percent measured using air displacement plethysmography and body fat percent estimated using Caucasian prediction equations was determined using Bland Altman plot.
Results
Comparison of ADP measured and predicted BF% showed that Caucasian prediction equation underestimated body fat percent among Ethiopian adults by 6.78% (P < 0.0001). This finding is consistent across all age groups and ethnicities in both sexes. Bland Altman plot did not show agreement between ADP and Caucasian prediction equation (mean difference = 6.7825) and some of the points are outside 95% confidence interval. The caucasian prediction equation significantly underestimates body fat percent in Ethiopian adults, which is consistent across all ethnic groups in the sample. The study developed Ethnic specific BF% prediction equations for Ethiopian adults.
Conclusion
The Caucasian prediction equation significantly underestimates body fat percent among Ethiopian adults regardless of ethnicity. Ethiopian ethnic-specific prediction equation can be used as a very simple, cheap, and cost-effective alternative for estimating body fat percent among Ethiopian adults for health care provision in the prevention of obesity and related morbidities and for research purposes.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Food Science
Reference47 articles.
1. Yulong Li Validity of non-invasive methods for body composition measurements in older adults Iowa State University 2012. Availabke from: https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=3605&context=etd,
2. Ramírez-Vélez R, Correa-Bautista JE, Sanders-Tordecilla A, Ojeda-Pardo ML, Cobo-Mejía EA, Castellanos-Vega RDP, et al. Percentage of body fat and fat mass index as a screening tool for metabolic syndrome prediction in Colombian University students. Nutrients. 2017;9(9). https://doi.org/10.3390/nu9091009.
3. Carpenter CL, Yan E, Chen S, Hong K, Arechiga A, Kim WS, et al. Body fat and body-mass index among a multiethnic sample of college-age men and women. J Obes. 2013;2013:790654. https://doi.org/10.1155/2013/790654 Epub 2013 Apr 8.
4. Rothman KJ. BMI-related errors in the measurement of obesity. Int J Obes (Lond). 2008;32(Suppl 3):S56–9. https://doi.org/10.1038/ijo.2008.87.
5. Deurenberg P, Yap M, van Staveren WA. Body mass index and percent body fat: a meta-analysis among different ethnic groups. Int J Obes Relat Metab Disord. 1998;22(12):1164–71.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献