Author:
Tang Li,Wang Yeyuan,Li Xue,Yang Liu,Luo Yingjuan,Li Chunrong,He Yulei
Abstract
Abstract
Background
After China ended its ‘dynamic zero-COVID policy’ on 7 December 2022, a large-scale outbreak of SARS-CoV-2 Omicron infections emerged across the country. We conducted a hospital-wide prospective study to document the epidemiological characteristics of the outbreak among healthcare workers in a hospital of Chengdu, where no previous staff SARS-CoV-2 infections were detected.
Methods
All hospital staff members were invited to complete an online questionnaire on COVID-19 in January 2023, and SARS-CoV-2 infection cases were followed up by telephone in June 2023 to collect data on long COVID. Univariable and multivariable logistic regression analyses were performed to evaluate factors associated with SARS-CoV-2 infection.
Results
A total of 2,899 hospital staff (93.5%) completed the online questionnaire, and 86.4% were infected with SARS-CoV-2 Omicron. The clinical manifestations of these patients were characterized by a high incidence of systemic symptoms. Cough (83.4%), fatigue (79.8%) and fever (74.3%) were the most frequently reported symptoms. Multivariable logistic analysis revealed that females [adjusted odds ratio (aOR): 1.42, 95% confidence interval (CI): 1.07–1.88] and clinical practitioners (aOR: 10.32, 95% CI: 6.57–16.20) were associated with an increased risk of SARS-CoV-2 infection, whereas advanced age ≥ 60 years (aOR: 0.30, 95% CI: 0.19–0.49) and a three-dose COVID-19 vaccination with the most recent dose administered within 3 months before 7 December 2022 (aOR: 0.44, 95% CI: 0.23–0.87 for within 1 month; aOR: 0.46, 95% CI: 0.22–0.97 for within 1–3 months) were associated with reduced risk. Among the cases, 4.27% experienced long COVID of fatigue, brain fog or both, with the majority reporting minor symptoms.
Conclusion
Our findings provide a snapshot of the epidemiological situation of SARS-CoV-2 infection among healthcare workers in Chengdu after China’s deregulation of COVID-19 control. Data in the study can aid in the development and implementation of effective measures to protect healthcare workers and maintain the integrity of healthcare systems during challenging times such as a rapid and widespread Omicron outbreak.
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J, Peacock SJ, et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol. 2023;21(3):162–77.
2. Karim SSA, Karim QA. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet. 2021;398(10317):2126–8.
3. World Health Organization. Statement on the update of WHO’s working definitions and tracking system for SARS-CoV-2 variants of concern and variants of interest 2023. https://www.who.int/news/item/16-03-2023-statement-on-the-update-of-who-s-working-definitions-and-tracking-system-for-sars-cov-2-variants-of-concern-and-variants-of-interest
4. National Health Commission of the People’s Republic of China. A circular on further optimizing the COVID-19 control policies. Beijing. 2022. http://www.nhc.gov.cn/xcs/gzzcwj/202212/8278e7a7aee34e5bb378f0e0fc94e0f0.shtml. [in Chinese].
5. Yang J, Hong W, Lei H, He C, Lei W, Zhou Y, et al. Low levels of neutralizing antibodies against XBB Omicron subvariants after BA.5 infection. Signal Transduct Target Ther. 2023;8(1):252. https://doi.org/10.1038/s41392-023-01495-4