Host proteome linked to HPV E7-mediated specific gene hypermethylation in cancer pathways

Author:

Na Rangsee Nopphamon,Yanatatsaneejit Pattamawadee,Pisitkun Trairak,Somparn Poorichaya,Jintaridth Pornrutsami,Topanurak SupachaiORCID

Abstract

Abstract Background Human papillomavirus (HPV) infection causes around 90% of cervical cancer cases, and cervical cancer is a leading cause of female mortality worldwide. HPV-derived oncoprotein E7 participates in cervical carcinogenesis by inducing aberrant host DNA methylation. However, the targeting specificity of E7 methylation of host genes is not fully understood but is important in the down-regulation of crucial proteins of the hallmark cancer pathways. In this study, we aim to link E7-driven aberrations in the host proteome to corresponding gene promoter hypermethylation events in the hope of providing novel therapeutic targets and biomarkers to indicate the progression of cervical cancer. Methods HEK293 cells were transfected with pcDNA3.1-E7 plasmid and empty vector and subjected to mass spectrometry-based proteomic analysis. Down-regulated proteins (where relative abundance was determined significant by paired T-test) relevant to cancer pathways were selected as gene candidates for mRNA transcript abundance measurement by qPCR and expression compared with that in SiHa cells (HPV type 16 positive). Methylation Specific PCR was used to determine promoter hypermethylation in genes downregulated in both SiHa and transfected HEK293 cell lines. The FunRich and STRING databases were used for identification of potential regulatory transcription factors and the proteins interacting with transcription factor gene candidates, respectively. Results Approximately 400 proteins totally were identified in proteomics analysis. The transcripts of six genes involved in the host immune response and cell proliferation (PTMS, C1QBP, BCAP31, CDKN2A, ZMYM6 and HIST1H1D) were down-regulated, corresponding to proteomic results. Methylation assays showed four gene promoters (PTMS, C1QBP, BCAP31 and CDKN2A) were hypermethylated with 61, 55.5, 70 and 78% increased methylation, respectively. Those four genes can be regulated by the GA-binding protein alpha chain, specificity protein 1 and ETS-like protein-1 transcription factors, as identified from FunRich database predictions. Conclusions HPV E7 altered the HEK293 proteome, particularly with respect to proteins involved in cell proliferation and host immunity. Down-regulation of these proteins appears to be partly mediated via host DNA methylation. E7 possibly complexes with the transcription factors of its targeting genes and DNMT1, allowing methylation of specific target gene promoters.

Funder

Faculty of Tropical Medicine, Mahidol University

National Science and Technology Development Agency

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Infectious Diseases,Oncology,Epidemiology

Reference72 articles.

1. WHO/ICO Information Center of HPV and Cervical Cancer (HPV Information Center). Human Papillomavirus and Related Cancers in the World. In: Summary Report 2017. http://www.who.int/hpvcentre/en. Accessed 18 Jul 2017.

2. Pinidis P, Tsikouras P, Iatrakis G, Zervoudis S, Koukouli Z, Bothou A, et al. Human papilloma Virus’ life cycle and carcinogenesis. Medica (Buchar). 2016;11(1):48–54.

3. Pan Y, Liu G, Zhou F, Su B, Li Y. DNA methylation profiles in cancer diagnosis and therapeutics. Clin Exp Med. 2018;(18):1–14.

4. Hamborsky J, Kroger A, Wolf S, Epidemiology and Prevention of Vaccine-Preventable Diseases. 13th ed. Centers for Disease Control and Prevention. The Pinkbook. 2016;(11):175–86.

5. National Cancer Institute (NCI). Fact sheet: HPV and cancer. https://www.cancer.gov/about-cancer/causesprevention/risk/infectious-agents/hpv-fact-sheet. Accessed 18 Jul 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3