Abstract
Abstract
Background
Human papillomavirus (HPV) infection causes around 90% of cervical cancer cases, and cervical cancer is a leading cause of female mortality worldwide. HPV-derived oncoprotein E7 participates in cervical carcinogenesis by inducing aberrant host DNA methylation. However, the targeting specificity of E7 methylation of host genes is not fully understood but is important in the down-regulation of crucial proteins of the hallmark cancer pathways. In this study, we aim to link E7-driven aberrations in the host proteome to corresponding gene promoter hypermethylation events in the hope of providing novel therapeutic targets and biomarkers to indicate the progression of cervical cancer.
Methods
HEK293 cells were transfected with pcDNA3.1-E7 plasmid and empty vector and subjected to mass spectrometry-based proteomic analysis. Down-regulated proteins (where relative abundance was determined significant by paired T-test) relevant to cancer pathways were selected as gene candidates for mRNA transcript abundance measurement by qPCR and expression compared with that in SiHa cells (HPV type 16 positive). Methylation Specific PCR was used to determine promoter hypermethylation in genes downregulated in both SiHa and transfected HEK293 cell lines. The FunRich and STRING databases were used for identification of potential regulatory transcription factors and the proteins interacting with transcription factor gene candidates, respectively.
Results
Approximately 400 proteins totally were identified in proteomics analysis. The transcripts of six genes involved in the host immune response and cell proliferation (PTMS, C1QBP, BCAP31, CDKN2A, ZMYM6 and HIST1H1D) were down-regulated, corresponding to proteomic results. Methylation assays showed four gene promoters (PTMS, C1QBP, BCAP31 and CDKN2A) were hypermethylated with 61, 55.5, 70 and 78% increased methylation, respectively. Those four genes can be regulated by the GA-binding protein alpha chain, specificity protein 1 and ETS-like protein-1 transcription factors, as identified from FunRich database predictions.
Conclusions
HPV E7 altered the HEK293 proteome, particularly with respect to proteins involved in cell proliferation and host immunity. Down-regulation of these proteins appears to be partly mediated via host DNA methylation. E7 possibly complexes with the transcription factors of its targeting genes and DNMT1, allowing methylation of specific target gene promoters.
Funder
Faculty of Tropical Medicine, Mahidol University
National Science and Technology Development Agency
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Infectious Diseases,Oncology,Epidemiology
Reference72 articles.
1. WHO/ICO Information Center of HPV and Cervical Cancer (HPV Information Center). Human Papillomavirus and Related Cancers in the World. In: Summary Report 2017. http://www.who.int/hpvcentre/en. Accessed 18 Jul 2017.
2. Pinidis P, Tsikouras P, Iatrakis G, Zervoudis S, Koukouli Z, Bothou A, et al. Human papilloma Virus’ life cycle and carcinogenesis. Medica (Buchar). 2016;11(1):48–54.
3. Pan Y, Liu G, Zhou F, Su B, Li Y. DNA methylation profiles in cancer diagnosis and therapeutics. Clin Exp Med. 2018;(18):1–14.
4. Hamborsky J, Kroger A, Wolf S, Epidemiology and Prevention of Vaccine-Preventable Diseases. 13th ed. Centers for Disease Control and Prevention. The Pinkbook. 2016;(11):175–86.
5. National Cancer Institute (NCI). Fact sheet: HPV and cancer. https://www.cancer.gov/about-cancer/causesprevention/risk/infectious-agents/hpv-fact-sheet. Accessed 18 Jul 2017.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献