Co‐administration of 2’3’-cGAMP STING activator and CpG-C adjuvants with a mutated form of HPV 16 E7 protein leads to tumor growth inhibition in the mouse model

Author:

Dorostkar Fariba,Arashkia Arash,Roohvand Farzin,Shoja Zabihollah,Navari Mohsen,Mashhadi Abolghasem Shirazi Maryam,Shahosseini Zahra,Farahmand Mohammad,Shams nosrati Mohammad Sadegh,Jalilvand Somayeh

Abstract

AbstractPersistent infection with high-risk genotypes of human papillomavirus (HPV) is the leading cause of cervical cancer. The HPV oncoprotein E7 is constitutively expressed in cervical cancer and considered as an essential target for tumor-specific immunity. The goal of this study was to develop a candidate therapeutic vaccine based on the mutated E7 protein that had possibly reduced transformation capacity while was able to elicit a robust immune response. Therefore, the mutant type of HPV 16 E7 (E7GRG) protein was recombinantly expressed in E. coli. The protein was then purified and formulated with 2’-3’cGAMP CDN and/or CpG-C ODN adjuvants and subcutaneously injected to female C57BL/6 mice. To evaluate the immunogenic response, lymphocyte proliferation, secretion levels of IFN-γ and IL-4 cytokines, granzyme B level, and total IgG and subclasses of IgG antibody were measured. The anti-tumor activity was evaluated in tumor-harboring C57BL/6 mice. The highest rate of cell proliferation, IFN-γ and granzyme B levels, and amount of IgG antibody were found in mice group that were injected by E7GRG + 2′-3′cGAMP + CpG-C. Therapeutic immunization with E7GRG + 2′-3′cGAMP + CpG-C also significantly suppressed TC-1 tumor growth in mice. In conclusion, the results demonstrated that E7GRG + 2′-3′cGAMP + CpG-C induced strong cell-mediated and humoral immune responses that resulted in inhibition of tumor in mouse model.

Funder

Tehran University of Medical Sciences and Health Services

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Infectious Diseases,Oncology,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3