Microplastics: a multidimensional contaminant requires a multidimensional framework for assessing risk

Author:

Bucci KennedyORCID,Rochman Chelsea M.

Abstract

AbstractThe global ubiquity and demonstrated toxicity of microplastics has led governments around the world to express the need for a risk assessment on microplastics. To conduct a risk assessment, scientists often draw upon frameworks from other contaminants, however we argue that microplastics are a unique pollutant and thus require a unique framework. Microplastics are a multidimensional contaminant, differing in size, shape, polymer type, and chemical cocktail. Each of these dimensions may influence the toxicity of the particle. Furthermore, microplastic pollution exists as a complex and dynamic mixture of particles, that varies over temporal and spatial scales. Thus, we propose a multidimensional risk framework for microplastics that incorporates, rather than simplifies, the multidimensionality of the contaminant as well as the contaminant mixture. With this framework, we can calculate a particle-specific hazard value that describes the potential for a single particle to cause harm based on its chemical and physical properties. The particle-specific hazard values can then be combined based on the number and type of particles in an environmental sample to inform the overall hazard value of the sample. The risk of the sample can then be calculated, which is dependent on the overall hazard value and the concentration of particles in the sample. Risk values among samples in the environment can be compared to illustrate differences among locations or seasons, or can be placed in a management framework with thresholds to guide regulatory decisions. To demonstrate the utility of our proposed framework, we perform a case study using data from San Francisco Bay. Our proposed framework is just that, and requires new research for application. To strengthen the ability of this framework to accurately predict risk, we propose a testing scheme that prioritizes strategic experimental designs that will increase our understanding of how each dimension of microplastics affect the toxicity (or hazard value) of a particle.

Publisher

Springer Science and Business Media LLC

Subject

Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3