Addressing the importance of microplastic particles as vectors for long-range transport of chemical contaminants: perspective in relation to prioritizing research and regulatory actions

Author:

Gouin ToddORCID

Abstract

AbstractOver the last several years there has been increasing concern regarding the environmental fate and potential global transport of plastic debris, particularly in the form of microplastic particles (MPs). The global transport of MPs has also triggered concerns regarding the potential role that its mobility may represent towards influencing the long-range environmental transport (LRET) of particle-bound chemicals, particularly the large number of chemicals known to be added to plastic. This perspective considers the various lines-of-evidence that might be used towards understanding the LRET of persistent organic pollutants (POPs). For instance, it has been proposed that the LRET of POPs is facilitated by global fractionation processes that facilitate the mobility of chemicals from source regions towards remote locations, such as the polar regions, where they have the potential to accumulate. These processes are influenced by the physicochemical properties of POPs and can result in various transport mechanisms influencing environmental fate and transport. Here I suggest that there are similarities that can be drawn, whereby knowledge of how differences in the physicochemical properties of MPs relative to different emission scenarios, can influence the relative importance of sequestration processes that may result in global fractionation of MPs. Several challenges are identified throughout the perspective, with an urgent need towards the development and application of standard sampling and analytical methods being identified as critical for enabling datasets to be reliably compared for use in better understanding potential source-receptor relationships, as well as advancing the characterization and quantification of various environmental fate processes. In many instances, it is suggested that advances in our understanding can be facilitated based on knowledge obtained in other areas of research, such as in relation to studies developing tools to evaluate the mobility of particulate organic matter in aqueous environments or from studies investigating the fate and mobility of atmospheric particulates. Recognizing that not all MPs are equal, with respect to environmental fate and toxicological effects, knowledge regarding which types of MPs are likely to be subject to LRET can only strengthen our ability to evaluate their role as vectors of transport for plastic associated chemicals and the associated risks that their LRET may represent. Nevertheless, several outstanding issues remain that would benefit from constructive discussions between all stakeholders. It is anticipated that this perspective can play a role in initiating those discussions.

Funder

International council of chemical associations

Publisher

Springer Science and Business Media LLC

Subject

Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3