Meso- and microplastic distribution and spatial connections to metal contaminations in highly cultivated and urbanised floodplain soilscapes – a case study from the Nidda River (Germany)

Author:

Weber Collin J.,Opp Christian,Prume Julia A.,Koch Martin,Chifflard Peter

Abstract

AbstractFloodplain soilscapes act as temporary sinks in the environment and are nowadays affected by multiple contaminant accumulations and exposures, including different trace metals and plastics. Despite increasing knowledge about the occurrence and behaviour of plastics at the interface between aquatic and terrestrial systems, there are still major uncertainties about the spatial distribution of plastics, their sources and deposition, as well as spatial relationships with other contaminants. Our recent case study addresses these questions, using the example of a river system ranging from rural to urban areas. Based on a geospatial sampling approach we obtained data about soil properties, metal contents via ICP-MS analyses, and particle-based (171 μm – 52 mm) plastic contents, analysed using sodium chloride density separation, visual fluorescence identification and ATR-FTIR analysis. We found plastic contents of 0.00–35.82 p kg− 1 and zero to moderate metal enrichments. Levels of both contaminations occur in the lower range of known concentrations in floodplain soils and show a different spatial distribution along the river course and in the floodplain cross-section. Furthermore, we found that plastic enrichment occurs in the uppermost soil layers, while trace metal enrichment is equally distributed over depth, indicating different sources like flood dynamics and agricultural practice during different deposition periods. Finally, direct short to long-term anthropogenic impacts, like floodplain restoration or tillage may affect plastic enrichments, raising questions for future research directions within floodplain soilscapes.

Funder

Technische Universität Darmstadt

Publisher

Springer Science and Business Media LLC

Subject

Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3