Activated protein C ameliorates impaired renal microvascular oxygenation and sodium reabsorption in endotoxemic rats

Author:

Almac Emre,Johannes Tanja,Bezemer Rick,Mik Egbert G,Unertl Klaus E,Groeneveld AB Johan,Ince Can

Abstract

Abstract Introduction We aimed to test whether continuous recombinant human activated protein C (APC) administration would be able to protect renal oxygenation and function during endotoxemia in order to provide more insight into the role of coagulation and inflammation in the development of septic acute kidney injury. Methods In anesthetized, mechanically ventilated Wistar rats, endotoxemia was induced by lipopolysaccharide administration (10 mg/kg i.v. over 30 min). One hour later, the rats received fluid resuscitation with 0 (LPS + FR group; n = 8), 10 (APC10 group; n = 8), or 100 (APC100 group; n = 8) μg/kg/h APC for 2 h. Renal microvascular oxygenation in the cortex and medulla were measured using phosphorimetry, and renal creatinine clearance rate and sodium reabsorption were measured as indicators of renal function. Statistical significance of differences between groups was tested using two-way ANOVA with Bonferroni post hoc tests. Results APC did not have notable effects on systemic and renal hemodynamic and oxygenation variables or creatinine clearance. The changes in renal microvascular oxygenation in both the cortex (r = 0.66; p < 0.001) and medulla (r = 0.80; p < 0.001) were correlated to renal sodium reabsorption. Conclusion Renal sodium reabsorption is closely correlated to renal microvascular oxygenation during endotoxemia. In this study, fluid resuscitation and APC supplementation were not significantly effective in protecting renal microvascular oxygenation and renal function. The specific mechanisms responsible for these effects of APC warrant further study.

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3