Author:
Wagner Katja,Wachter Ulrich,Vogt Josef A,Scheuerle Angelika,McCook Oscar,Weber Sandra,Gröger Michael,Stahl Bettina,Georgieff Michael,Möller Peter,Bergmann Andreas,Hein Frauke,Calzia Enrico,Radermacher Peter,Wagner Florian
Abstract
Abstract
Purpose
Adrenomedullin (ADM) has been referred to as a double-edged sword during septic shock: On one hand, ADM supplementation improved organ perfusion and function, attenuated systemic inflammation, and ultimately reduced tissue apoptosis and mortality. On the other hand, ADM overproduction can cause circulatory collapse and organ failure due to impaired vasoconstrictor response and reduced myocardial contractility. Since most of these data originate from un-resuscitated shock models, we tested the hypothesis whether the newly developed anti-ADM antibody HAM1101 may improve catecholamine responsiveness and thus attenuate organ dysfunction during resuscitated murine, cecal ligation and puncture (CLP)-induced septic shock.
Methods
Immediately after CLP, mice randomly received vehicle (phosphate-buffered saline, n = 11) or HAM1101 (n = 9; 2 μg·g−1). Fifteen hours after CLP, animals were anesthetized, mechanically ventilated, instrumented, and resuscitated with hydroxyethylstarch and continuous i.v. norepinephrine to achieve normotensive hemodynamics (mean arterial pressure > 50 to 60 mmHg).
Results
HAM1101 pretreatment reduced the norepinephrine infusion rates required to achieve hemodynamic targets, increased urine flow, improved creatinine clearance, and lowered neutrophil gelatinase-associated lipocalin blood levels, which coincided with reduced expression of the inducible nitric oxide synthase and formation of peroxynitrite (nitrotyrosine immunostaining) in the kidney and aorta, ultimately resulting in attenuated systemic inflammation and tissue apoptosis.
Conclusions
During resuscitated murine septic shock, early ADM binding with HAM1101 improved catecholamine responsiveness, blunted the shock-related impairment of energy metabolism, reduced nitrosative stress, and attenuated systemic inflammatory response, which was ultimately associated with reduced kidney dysfunction and organ injury.
Publisher
Springer Science and Business Media LLC
Subject
Critical Care and Intensive Care Medicine
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献