Abstract
AbstractThe demand for effective, real-time environmental monitoring and for customized point-of-care (PoC) health, requires the ability to detect low molecular concentrations, using portable, reliable and cost-effective devices. However, traditional techniques often require time consuming, highly technical and laborious sample preparations, as well as expensive, slow and bulky instrumentation that needs to be supervised by laboratory technicians. Consequently, fast, compact, self-sufficient, reusable and cost-effective lab-on-a-chip (LOC) devices, which can perform all the required tasks and can then upload the data to portable devices, would revolutionize any mobile sensing application by bringing the testing device to the field or to the patient. Integrated enhanced Raman scattering devices are the most promising platform to accomplish this vision and to become the basic architecture for future universal molecular sensors and hence an artificial optical nose. Here we are reviewing the latest theoretical and experimental work along this direction.
Publisher
Springer Science and Business Media LLC
Subject
General Engineering,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献