Abstract
AbstractThis study aims to investigate elastic wave localization that leverages defect band splitting in a phononic crystal with double defects through in-depth analysis of comparison of numerical and experimental results. When more than one defect is created inside a phononic crystal, these defects can interact with each other, resulting in a distinctive physical phenomenon from a single defect case: defect band splitting. For a phononic crystal consisting of circular-hole type unit cells in a thin aluminum plate, under A0 (the lowest antisymmetric) Lamb waves, both numerical simulations and experiments successfully confirm the defect band splitting phenomenon via frequency response functions for the out-of-plane displacement calculated/measured at the double defects within a finite distance. Furthermore, experimental visualization of in-phase and out-of-phase defect mode shapes at each frequency of the split defect bands is achieved and found to be in excellent agreement with the simulated results. Different inter-distance combinations of the double defects reveal that the degree of the defect band splitting decreases with the increasing distance due to weaker coupling between the defects. This work may shed light on engineering applications of a multiple-defect-introduced phononic crystal, including broadband energy harvesting, frequency detectors, and elastic wireless power transfer.
Funder
national research council of science and technology
national research foundation of korea
Publisher
Springer Science and Business Media LLC
Subject
General Engineering,General Materials Science
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献