Shape-altering flexible plasmonics of in-situ deformable nanorings

Author:

Tao WeiORCID,Laible Florian,Hmima Abdelhamid,Maurer Thomas,Fleischer Monika

Abstract

AbstractNanorings (NRs) with their intrinsic cavities have attracted interest as plasmonic nanoparticles for years, due to the uniform electric field enhancement inside the cavity, lower plasmon damping effects and comparatively high refractive index sensitivities. In the present work, we successfully fabricated a series of Au NR arrays on flexible polydimethylsiloxane substrates by taking advantage of state-of-the-art fabrication methods such as electron beam lithography and wet-etching transfer techniques. In-situ optical measurements on these flexible systems are enabled by implementing a homemade micro-stretcher inside an optical reflection spectroscopy setup. The corresponding dark-field spectra of thin-walled NR arrays exhibit a strong shift to longer wavelengths (i.e., ~ 2.85 nm per 1% strain) under polarization perpendicular to the traction, mainly resulting from the increasing shape deformation of the NRs under strain. Moreover, numerical simulations illustrate that the shifting plasmonic mode has a radially-symmetric charge distribution of the bonding mode and is rather sensitive to the tuning of the NRs’ shape as confirmed by a subsequent in-situ scanning electron microscope characterization. These results explore the possibilities of shape-altering flexible plasmonics for nanoparticles with a cavity and indicate potential applications for plasmonic colors and biochemical sensing in future work. Graphical Abstract

Funder

Agence Nationale de la Recherche and the FEDER

Graduate School NANO-PHOT

China Scholarship Council

L'Université Franco-Allemande

Eberhard Karls Universität Tübingen

Publisher

Springer Science and Business Media LLC

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3