Abstract
AbstractIn this study, an electrochemical biosensor composed of a horseradish peroxidase (HRP)-encapsulated protein nanoparticles (HEPNP) was fabricated for the sensitive and selective detection of H2O2. The HEPNP has a three-dimensional structure that can contain a large amount of HRP; therefore, HEPNP can amplify the electrochemical signals necessary for the detection of H2O2. Furthermore, reduced graphene oxide (rGO) was used to increase the efficiency of electron transfer from the HEPNP to an electrode, which could enhance the electrochemical signal. This biosensor showed a sensitive electrochemical performance for detection of H2O2 with signals in the range from 0.01–100 μM, and it could detect low concentrations up to 0.01 μM. Furthermore, this biosensor was operated against interferences from glucose, ascorbic acid, and uric acid. In addition, this fabricated H2O2 biosensor showed selective detection performance in human blood serum. Therefore, the proposed biosensor could promote the sensitive and selective detection of H2O2 in clinical applications.
Funder
National Research Foundation of Korea
Korea Environmental Industry and Technology Institute
Korea Institute of Energy Technology Evaluation and Planning
Publisher
Springer Science and Business Media LLC
Subject
General Engineering,General Materials Science
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献