3D printed fluidic swab for COVID-19 testing with improved diagnostic yield and user comfort
-
Published:2023-09-16
Issue:1
Volume:10
Page:
-
ISSN:2196-5404
-
Container-title:Nano Convergence
-
language:en
-
Short-container-title:Nano Convergence
Author:
Kim Joochan, Jeon Jaehyung, Jang Hyowon, Moon Youngkwang, Abafogi Abdurhaman Teyib, van Noort Danny, Lee Jinkee, Kang Taejoon, Park SungsuORCID
Abstract
AbstractThe current standard method of diagnosing coronavirus disease 2019 (COVID-19) involves uncomfortable and invasive nasopharyngeal (NP) sampling using cotton swabs (CS), which can be unsuitable for self-testing. Although mid-turbinate sampling is an alternative, it has a lower diagnostic yield than NP sampling. Nasal wash (NW) has a similar diagnostic yield to NP sampling, but is cumbersome to perform. In this study, we introduce a 3D printed fluidic swab (3DPFS) that enables easy NW sampling for COVID-19 testing with improved diagnostic yield. The 3DPFS comprises a swab head, microchannel, and socket that can be connected to a syringe containing 250 µL of NW solution. The 3DPFS efficiently collects nasal fluid from the surface of the nasal cavity, resulting in higher sensitivity than CS for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This was confirmed by both reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and lateral flow assays (LFA) in virus-spiked nasal samples and clinical samples. Additionally, users reported greater comfort when using the 3DPFS compared to CS. These findings suggest that the 3DPFS can improve the performance of COVID-19 testing by facilitating efficient and less painful nasal sample collection.
Funder
National Research Council of Science & Technology Ministry of Science and ICT, South Korea
Publisher
Springer Science and Business Media LLC
Subject
General Engineering,General Materials Science
Reference24 articles.
1. C. Callahan, R.A. Lee, G.R. Lee, K. Zulauf, J.E. Kirby, R. Arnaout, J. Clin. Microbiol. 59, e00569-e621 (2021). https://doi.org/10.1128/JCM.00569-21 2. S. Pinninti, C. Trieu, S.K. Pati, M. Latting, J. Cooper, M.C. Seleme, S. Boppana, N. Arora, W.J. Britt, S.B. Boppana, Clin. Infect. Dis. 72, 1253 (2021). https://doi.org/10.1093/cid/ciaa882 3. M. Nairz, R. Bellmann-Weiler, M. Ladstätter, F. Schüllner, M. Zimmermann, A.M. Koller, S. Blunder, H. Naschberger, W. Klotz, M. Herold, S. Kerndler, M. Jeske, D. Haschka, V. Petzer, A. Schroll, T. Sonnweber, I. Tancevski, G. Fritsche, M.E.G. de Araujo, T. Stasyk, L.A. Huber, A. Griesmacher, I. Theurl, G. Weiss, Sci. Rep. 11, 2261 (2021). https://doi.org/10.1038/s41598-021-81782-8 4. K.M. Gao, A.G. Derr, Z. Guo, K. Nündel, A. Marshak-Rothstein, R.W. Finberg, J.P. Wang, JCI Insight 6, e152288 (2021). https://doi.org/10.1172/jci.insight.152288 5. A. Calame, L. Mazza, A. Renzoni, L. Kaiser, M. Schibler, Eur. J. Clin. Microbiol. Infect. Dis. 40, 441 (2021). https://doi.org/10.1007/s10096-020-04039-8
|
|