Enhanced thermoelectric performance of SnSe by controlled vacancy population

Author:

Lee Ji-EunORCID,Kim Kyoo,Nguyen Van Quang,Hwang Jinwoong,Denlinger Jonathan D.,Min Byung Il,Cho Sunglae,Ryu Hyejin,Hwang Choongyu,Mo Sung-KwanORCID

Abstract

AbstractThe thermoelectric performance of SnSe strongly depends on its low-energy electron band structure that provides high density of states in a narrow energy window due to the multi-valley valence band maximum (VBM). Angle-resolved photoemission spectroscopy measurements, in conjunction with first-principles calculations, reveal that the binding energy of the VBM of SnSe is tuned by the population of Sn vacancy, which is determined by the cooling rate during the sample growth. The VBM shift follows precisely the behavior of the thermoelectric power factor, while the effective mass is barely modified upon changing the population of Sn vacancies. These findings indicate that the low-energy electron band structure is closely correlated with the high thermoelectric performance of hole-doped SnSe, providing a viable route toward engineering the intrinsic defect-induced thermoelectric performance via the sample growth condition without an additional ex-situ process. Graphical Abstract

Funder

Basic Energy Sciences

National Research Foundation of Korea

Ministry of Education

Internal R&D pDOrogram at KAERI

Korea Institute of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

General Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3