Abstract
AbstractIf generated from water using renewable energy, hydrogen could serve as a carbon-zero, environmentally benign fuel to meet the needs of modern society. Photoelectrochemical cells integrate the absorption and conversion of solar energy and chemical catalysis for the generation of high value products. Tandem photoelectrochemical devices have demonstrated impressive solar-to-hydrogen conversion efficiencies but have not become economically relevant due to high production cost. Dye-sensitized solar cells, those based on a monolayer of molecular dye adsorbed to a high surface area, optically transparent semiconductor electrode, offer a possible route to realizing tandem photochemical systems for H2 production by water photolysis with lower overall material and processing costs. This review addresses the design and materials important to the development of tandem dye-sensitized photoelectrochemical cells for solar H2 production and highlights current published reports detailing systems capable of spontaneous H2 formation from water using only dye-sensitized interfaces for light capture.
Publisher
Springer Science and Business Media LLC
Subject
General Engineering,General Materials Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献