Author:
Faccio Greta,Gajda-Schrantz Krisztina,Ihssen Julian,Boudoire Florent,Hu Yelin,Mun Bongjin Simon,Bora Debajeet K,Thöny-Meyer Linda,Braun Artur
Abstract
Abstract
Functionalization of the hematite photoanode with the photosynthetic light antenna protein C-phycocyanin (PC) can yield substantial enhancement of the photocurrent density. Photoelectrochemical cells with bio-hybrid electrodes from photosynthetic proteins and inorganic semiconductors have thus potential for the use in artificial photosynthesis. We investigate here processing routes for the functionalization of hematite photoanodes with PC, including in situ co-polymerization of PC with enzymatically-produced melanin, and using a recombinant PC genetically engineered to carry a hexa-histidine tag (αHisPC). First, the effect of the immobilisation of PC on the electrode morphology and photocurrent production is evaluated. Then, the electronic charge transfer in dark and light conditions is assessed with electrochemical impedance spectroscopy and valence band (VB) X-ray photoemission spectroscopy. The relative shift of the VB spectrum towards the Fermi energy EF upon illumination is smaller for the more complex processed coating and virtually disappears for αHisPC immobilised with a melanin film. Optimal conditions for protein immobilisation are determined and the dark currents benefit most from the most advanced protein coating processes.
Publisher
Springer Science and Business Media LLC
Subject
General Engineering,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献